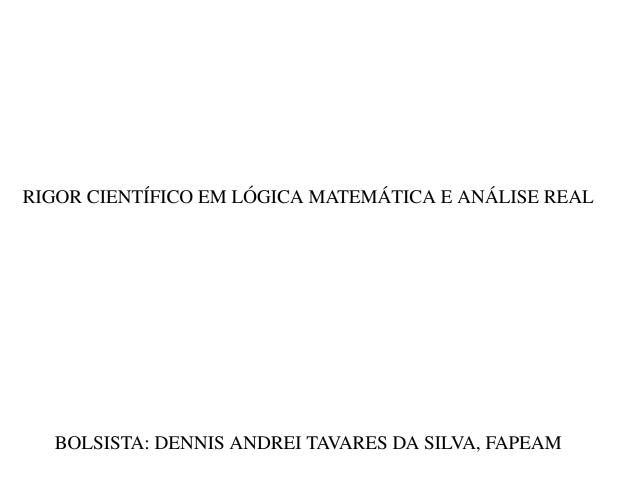
UNIVERSIDADE FEDERAL DO AMAZONAS PRÓ- REITORIA DE PESQUISA E PÓS-GRADUAÇÃO DEPARTAMENTO DE APOIO À PESQUISA PROGRAMA INSTITUCIONAL DE INICIAÇÃO CIENTÍFICA



UNIVERSIDADE FEDERAL DO AMAZONAS PRÓ- REITORIA DE PESQUISA E PÓS-GRADUAÇÃO DEPARTAMENTO DE APOIO À PESQUISA PROGRAMA INSTITUCIONAL DE INICIAÇÃO CIENTÍFICA

RELATÓRIO FINAL PIB - E - 027/2011 RIGOR CIENTÍFICO EM LÓGICA MATEMÁTICA E ANÁLISE REAL

Bolsista: Dennis Andrei Tavares da Silva, FAPEAM Orientador: Prof. Dr. Nilomar Vieira de Oliveira

Conteúdo

1	INTRODUÇAO	5
2	LÓGICA MATEMÁTICA	6
3	CONJUNTOS E FUNÇÕES	14
4	NÚMEROS REAIS	20
5	SEQUENCIA DE NÚMEROS REAIS	23
6	SÉRIES NUMÉRICAS	25
7	CONCLUSÃO	26
8	CRONOGRAMA	27
9	REFERÊNCIAS	28

RESUMO

Neste relatório final descrevemos todos resultados do projeto Rigor Científico em Lógica Matemática e Análise Real. Na primeira etapa do projeto foram estudados: Lógica Matemática, com especial ênfase as tabelas-verdades que dão suporte às técnicas de demonstração direta e indireta, estudo de conjuntos e funções de funções de uma variável real no contexto analítico, conjuntos enumeráveis e não-enumeráveis, em particular, foi discutida a não-enumerabilidade do conjunto dos números reais e a enumerabilidade do conjuntos dos números racionais. Na sequência, seguindo o conograma elaborado no projeto, fizemos o estudo do conjunto dos números reais com a exploração da caracterização dos números reais \mathbb{R} como corpo ordenado completo, com resolução de vários exercícios dos livros indicados nas referências bibliográficas [1, 2, 3]. Após essa etapa inicial iniciou-se nossos estudos sobre sequências e séries de números reais dando enfase a demontração dos teoremas, onde buscamos compreender e analisar todos os aspectos e definições relacionadas a limites e convergencia, completando com o estudo topologico da reta com bastante generalidade as noções de limite, de continuidade e as ideias com elas relacionadas. Todos os assuntos foram estudados com um grau de profundadidade bem maior com o que é visto usualmente no curso de graduação, visto que cada assunto abordado num período de aproximadamente 30 dias.

Palavras-chaves: Lógica matemática, conjunto e funções, números reais, análise matemática.

1 INTRODUÇÃO

Neste relatório constam todos os resultados do projeto de iniciação científica em matemática, em que fomos submetidos ao estudo de Lógica Matemática e Análise Real, com o devido rigor que essas disciplinas necessitam para aplicação na pesquisa matemática.

Os tópicos abordados no projeto, bem como seus teoremas, demonstrações e definições mais importantes estarão descritos aqui de forma clara e concisa, para bom entendimento dos leitores interessados. Também consta no relatório o cronograma de execução, as atividades desenvolvidas e as obras consultadas para o estudo perante o curso. A Matemática requer um árduo trabalho de formação afim de que se possa usar seus conhecimentos para produzir pesquisa. Neste projeto, somos orientados e estamos recebendo um treinamento no amadurecimento da lógica matemática e da linguagem científica formal escrita e falada.

Este relatório está organizado da seguinte maneira: no capítulos seguintes apresentamos os conteúdos trabalhados em Lógica Matemática. Nos capítulos seguintes serão apresentadas a logica matemática, tecnicas de demonstração e uma visão aprofundada sobre os assuntos trabalhados num curso de analise real. A Iniciação Científica em Matemática Pura, ao contrário das outras ciências, não ensina o bolsista a fazer pesquisa matemática mas sim prepara o aluno para alcançar este nível.

2 LÓGICA MATEMÁTICA

Técnicas de Demonstração

As seguintes tautologias são bastantes utéis na construção de demonstrações. Onde cada letra representa uma sentença matemática com exceção a letra C é usada para representar uma setença que é sempre falsa, tal setença é chamada de "contradição".

(a)
$$(P \Leftrightarrow Q) \Leftrightarrow [(P \Rightarrow Q) \land (Q \Rightarrow Q)]$$

(b)
$$(P \Leftrightarrow Q) \Leftrightarrow [(P \Rightarrow Q) \land (\neg P \Rightarrow \neg Q)]$$

(c)
$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$

(d)
$$P \vee \neg P$$

(e)
$$(P \land \neg P) \Rightarrow C$$

(f)
$$P \lor \neg P$$

(g)
$$[(P \land \neg Q) \Rightarrow C] \Leftrightarrow (P \Rightarrow Q)$$

(h)
$$[P \land (P \Rightarrow Q)] \Rightarrow Q$$

(i)
$$[\neg Q \land (P \Rightarrow Q)] \Rightarrow \neg P$$

(j)
$$[\neg P \land (P \lor Q)] \Rightarrow Q$$

(k)
$$(P \land Q) \Rightarrow P$$

(1)
$$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$$

(m)
$$[(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_3) \land ... \land (P_{n-1} \Rightarrow P_n)] \Rightarrow (P_1 \Rightarrow P_n)$$

(n)
$$[(P \land Q) \Rightarrow R] \Leftrightarrow [(P \Rightarrow (Q \Rightarrow R)]$$

(o)
$$[(P \Rightarrow Q) \land (R \Rightarrow S) \land (P \lor R)] \Rightarrow (Q \lor S)$$

(p)
$$[P \Rightarrow (Q \lor R)] \Leftrightarrow [(P \land \neg Q) \Rightarrow R]$$

(q)
$$[(P \Rightarrow R) \land (Q \Rightarrow R)] \Leftrightarrow [(P \lor Q) \Rightarrow R]$$

Vamos fazer as demontrações das tautologias, utilizando tabelas verdades e a tecnica de demonstração por indução.

Demontração a) $(P \Leftrightarrow Q) \Leftrightarrow [(P \Rightarrow Q) \land (Q \Rightarrow Q)]$

P	Q	$(P \Leftrightarrow Q)$
V	V	V
V	F	F
F	V	F
F	F	V

P	Q	$(P \Rightarrow Q)$	$(Q \Rightarrow P)$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Demontração b) $(P \Leftrightarrow Q) \Leftrightarrow [(P \Rightarrow Q) \land (\neg P \Rightarrow \neg Q)]$

P	Q	$(P \Leftrightarrow Q)$
V	V	V
V	F	F
F	V	F
F	F	V

P	Q	$(P \Rightarrow Q)$	$(Q \Rightarrow P)$	$(P \Rightarrow Q) \land (\neg P \Rightarrow \neg Q)$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Demontração c) $(P\Rightarrow Q)\Leftrightarrow (\neg Q\Rightarrow \neg P)$

P	Q	$(P \Rightarrow Q)$
V	V	V
V	F	F
F	V	V
F	F	V

P	Q	$\neg Q$	$\neg P$	$(\neg Q \Rightarrow \neg P)$
V	V	F	F	V
V	F	V	F	F
F	V	F	V	V
F	F	V	V	V

Demontração d) $P \vee \neg P$

P	$\neg P$	$P \lor \neg P$
V	F	V
F	V	V

Demontração e) $(P \land \neg P) \Rightarrow C$

P	$\neg P$	$(P \lor \neg P)$
V	F	F
F	V	F

Demontração f) $P \lor \neg P$

P	$\neg P$	C	$(\neg P \land C)$	$(\neg P \land C) \Rightarrow P$
V	F	F	F	V
V	F	F	F	V
F	V	F	F	V
F	V	F	F	V

Demontração g) $[(P \land \neg Q) \Rightarrow C] \Leftrightarrow (P \Rightarrow Q)$

P	Q	$\neg Q$	$(P \land \neg Q)$	$(P \land \neg Q) \Rightarrow C$
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

P	Q	$(P \Rightarrow Q)$
V	V	V
V	F	F
F	V	V
F	F	V

Demontração h) $[P \land (P \Rightarrow Q)] \Rightarrow Q$

P	Q	$(P \Rightarrow Q)$	$P \wedge (P \Rightarrow Q)$	$[P \land (P \Rightarrow Q) \Rightarrow Q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

Demontração i) $[\neg Q \land (P \Rightarrow Q)] \Rightarrow \neg P$

P	Q	$\neg P$	$\neg Q$	$(P \Rightarrow Q)$	$\neg Q \land (P \Rightarrow Q)$	$[\neg Q \land (P \Rightarrow Q)] \Rightarrow \neg P$
V	V	F	F	V	F	V
V	F	F	V	F	F	V
F	V	V	F	V	F	V
F	F	V	V	V	V	V

Demontração j) $[\neg P \land (P \lor Q)] \Rightarrow Q$

P	Q	$\neg P$	$(P \lor Q)$	$\neg P \land (P \lor Q)$	$[\neg P \land (P \lor Q)] \Rightarrow Q$
V	V	F	V	F	V
V	F	F	V	F	V
F	V	V	V	V	V
F	F	V	F	F	V

Demontração l)
$$[(P\Rightarrow Q)\land (Q\Rightarrow R)]\Rightarrow (P\Rightarrow R)$$

P	Q	R	$(P \Rightarrow Q)$	$(Q \Rightarrow R)$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$(P \Rightarrow R)$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	V	F	V
V	F	F	F	V	F	F
F	V	V	V	V	V	V
F	V	F	V	F	F	V
F	F	V	V	V	V	V
F	F	F	V	V	V	V

$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$(P \Rightarrow R)$	$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$
V	V	V
F	F	V
F	V	V
F	F	V
V	V	V
F	V	V
V	V	V
V	V	V

Demontração m) $[(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_3) \land ... \land (P_{n-1} \Rightarrow P_n)] \Rightarrow (P_1 \Rightarrow P_n)$

Para n = 2, temos:

$$[(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_3)] \Rightarrow (P_1 \Rightarrow P_3)$$

Logo, a afirmação é valida para n = 2

Suponhamos que a arfimação seja valida para k>2 e vamos mostrar que é valida para k+1.

$$[(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_3) \land \dots \land (P_{k-1} \Rightarrow P_k)] \land (P_k \Rightarrow P_{k+1}) \Rightarrow$$

$$\Rightarrow [(P_1 \Rightarrow P_k) \land (P_k \Rightarrow P_{k+1})]$$

$$\Rightarrow (P_1 \Rightarrow P_{k+1})$$

Portanto,
$$[(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_3) \land ... \land (P_{n-1} \Rightarrow P_n)] \Rightarrow (P_1 \Rightarrow P_n).$$

Demontração n) $[(P \land Q) \Rightarrow R] \Leftrightarrow [(P \Rightarrow (Q \Rightarrow R)]$

P	Q	R	$(P \wedge Q)$	$(P \wedge Q) \Rightarrow R$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F	V	V	F	V
F	V	F	F	V
F	F	V	F	V
F	F	F	F	V

P	Q	R	$(Q \Rightarrow R)$	$P \Rightarrow (Q \Rightarrow R)$
V	V	V	V	V
V	V	F	F	F
V	F	V	V	V
V	F	F	V	V
F	V	V	V	V
F	V	F	F	V
F	F	V	V	V
F	F	F	V	V

$\textbf{Demontração o})[(P\Rightarrow Q) \land (R\Rightarrow S) \land (P \lor R)] \Rightarrow (Q \lor S)$

P	Q	R	S	$P \Rightarrow Q$	$R \Rightarrow S$	$P \vee R$	$\mathbf{h} = [(P \Rightarrow Q) \land (R \Rightarrow S) \land (P \lor R)]$
V	V	V	V	V	V	V	V
V	V	V	F	V	F	V	F
V	V	F	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	V	F	V	V	F
V	F	V	F	F	F	V	F
V	F	F	V	F	V	V	F
V	F	F	F	F	V	V	F
F	V	V	V	V	V	V	V
F	V	V	F	V	F	V	F
F	V	F	V	V	V	F	F
F	V	F	F	V	V	F	F
F	F	V	V	V	V	V	V
F	F	V	F	V	F	V	F
F	F	F	V	V	V	F	F
F	F	F	F	V	V	F	F

h	Q	S	$(Q \lor S)$	$[(P \Rightarrow Q) \land (R \Rightarrow S) \land (P \lor R)] \Rightarrow (Q \lor S)$
V	V	V	V	V
F	V	F	V	V
V	V	V	V	V
V	V	F	V	V
F	F	V	V	V
F	F	F	F	V
F	F	V	V	V
F	F	F	F	V
V	V	V	V	V
F	V	F	V	V
F	V	V	V	V
F	V	F	V	V
V	F	V	V	V
F	F	F	F	V
F	F	V	V	V
F	F	F	F	V

Demontração p) $[P \Rightarrow (Q \lor R)] \Leftrightarrow [(P \land \neg Q) \Rightarrow R]$

P	Q	R	$(Q \vee R)$	$P \Rightarrow (Q \lor R)$
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	V	V
F	F	V	V	V
F	F	F	F	V

P	Q	R	$\neg Q$	$(P \land \neg Q)$	$(P \land \neg Q) \Rightarrow R$
V	V	V	F	F	V
V	V	F	F	F	V
V	F	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	V	F	F	F	V
F	F	V	V	F	V
F	F	F	V	F	V

Demontração q) $[(P\Rightarrow R)\land (Q\Rightarrow R)]\Leftrightarrow [(P\lor Q)\Rightarrow R]$

P	Q	R	$(P \Rightarrow R)$	$(Q \Rightarrow R)$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
V	V	V	V	V	V
V	V	F	F	F	F
V	F	V	V	V	V
V	F	F	F	V	F
F	V	V	V	V	V
F	V	F	V	F	F
F	F	V	V	V	V
F	F	F	V	V	V

P	Q	R	$(P \lor Q)$	$(P \lor Q) \Rightarrow R$
V	V	V	V	V
V	V	F	V	F
V	F	V	V	V
V	F	F	V	F
F	V	V	V	V
F	V	F	V	F
F	F	V	F	V
F	F	F	F	V

3 CONJUNTOS E FUNÇÕES

Funções

Definição 1 Seja $f: A \to B$ uma função. Dizemos que f é **injetiva** quando, para quaisquer $x_1, x_2 \in A$,

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
.

Exemplo. A função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = 3x + 1 é injetiva.

Prova Sejam $x_1, x_2 \in \mathbb{R}$ quaisquer, $x_1 \neq x_2$. Temos

$$x_1 \neq x_2 \Rightarrow 3x_1 \neq 3x_2$$

 $\Rightarrow 3x_1 + 1 \neq 3x_2 + 1$
 $\Rightarrow f(x_1) \neq f(x_2).$

Portanto, f é uma função injetiva.

Observação 1 D_f é o domínio da função f, D_g é o domínio da função g, $D_{f \circ g}$ é o domínio da função composta. Estamos supondo no que segue que D_f é um subconjunto da imagem de g.

Proposição 1 Se f,g são injetivas, então $f \circ g$ é injetiva.

Prova Sejam $x_1, x_2 \in D_{f \circ g}$, $com x_1 \neq x_2 \in D_g$. Como g é injetiva, teremos $g(x_1) \neq g(x_2)$, e isto implica que $f(g(x_1)) \neq f(g(x_2))$ pois f é injetiva. Logo, $(f \circ g)(x_1) \neq (f \circ g)(x_2)$. Portanto, $f \circ g$ é injetiva.

Definição 2 Seja $f: A \to B$ uma função. Dizemos que f é **sobrejetiva** quando, para todo $y \in B$, existe pelo menos um $x \in A$ tal que f(x) = y.

Exemplo: A função $f : \mathbb{R} \to \mathbb{R}^+$ definida por $f(x) = x^2$ é sobrejetiva.

Prova Seja qualquer $y \in \mathbb{R}^+$, temos

$$y \in \mathbb{R}^{+} \Rightarrow y > 0$$

$$\Rightarrow \exists x = \sqrt{y}, pois, \sqrt{y} \in \mathbb{R}$$

$$\Rightarrow \forall y \in \mathbb{R}^{+}, \exists x \in \mathbb{R}; f(x) = y$$

Portanto f é uma função sobrejetiva.

Observação 2 Im g significa a imagem da função g, e estamos supondo o mesma da observação anterior.

Proposição 2 Se f,g são sobrejetivas, então $f \circ g$ é sobrejetiva.

Prova Seja $y \in D_{f \circ g}$. Como f é sobrejetiva, existe $w \in D_f$ tal que f(w) = y. Como o $D_f \subset Img$, existe algum $x \in D_g$ tal que g(x) = w, pois g é sobrejetiva. Logo, existe $x \in D_{f \circ g}$ tal que $(f \circ g)(x) = f(g(x)) = y$. Portanto, $f \circ g$ é uma função sobrejetiva.

Definição 3 Seja $f: A \to B$ é função. Dizemos que f é bijetiva quando, ela é injetiva e sobrejetiva ao mesmo tempo.

Proposição 3 Se f,g são bijetivas, então $f \circ g$ é bijetiva.

Prova Basta observar que, das prosições anteriores,

$$f,g$$
 são injetivas \Rightarrow $(f \circ g)$ é injetiva
 f,g são sobrejetivas \Rightarrow $(f \circ g)$ é sobrejetiva

Portanto, $f \circ g$ é bijetiva.

Definição 4 Seja $f: X \subset A \to B$ uma função. A **imagem direta** é o conjunto f(X) formado pelos valores f(x) que f assume nos pontos $x \in X$:

$$f(X) = \{ y \in B; y = f(x), x \in X \}$$

Portanto temos que a imagem direta é um subconjunto do contradominio.

Teorema 1 Seja $f: A \to B$ uma função. Se X, Y são subconjuntos de A, então

a)
$$f(X-Y) \supset f(X) - f(Y)$$

b)
$$f \notin injetiva \Rightarrow f(X - Y) = f(X) - f(Y)$$
.

Prova a) Seja $y_0 \in f(X) - f(Y)$, então $y_0 \in f(X)$ e $y_0 \notin f(Y)$. Assim, existe $x_0 \in X$ tal que

$$y_0 = f(x_0) \in f(X)$$
.

E como $y_0 \notin f(Y)$, não existe $t_0 \in Y$, tal que $y_0 = f(t_0)$. Em particular, $x_0 \notin Y$. Dessa forma,

$$x_0 \in X - Y \quad \Rightarrow \quad y_0 = f(x_0) \in f(X - Y).$$

Como y₀ é arbitrário, segue que $f(X - Y) \supset f(X) - f(Y)$.

b) Seja $y_0 \in f(X - Y)$, então existe $x_0 \in X - Y$ tal que $y_0 = f(x_0)$.

Como $x_0 \in X - Y$, então $x_0 \in X$ e $x_0 \notin Y$.

Sendo f uma função injetiva, não existe $x_1 \neq x_0$, com $x_1 \in Y$ tal que $f(x_1) = y_0$. Logo, $y_0 \notin f(Y)$. Assim,

$$y_0 \in f(X) - f(Y)$$
.

Como y₀ é arbitrário, segue que $f(X - Y) \subset f(X) - f(Y)$.

Finalmente, juntamento a última conclusão ao resultado do ítem a), temos

$$f(X - Y) = f(X) - f(Y),$$

como queríamos demonstrar.

Dada a $f: A \rightarrow B$ e indicando X, Y subconjuntos de A, temos:

- **I1**) $f(X \cup Y) = f(X) \cup f(Y)$
- **I2**) $f(X \cap Y) \subset f(X) \cap f(Y)$
- **I3**) $X \subset Y \Rightarrow f(X) \subset f(Y)$
- **I4)** $f(\emptyset) = \emptyset$

Demonstração I1) $f(X \cup Y) = f(X) \cup f(Y)$

$$w \in f(X \cup Y) \implies \exists x \in (X \cup Y); w = f(x)$$

$$\Rightarrow x \in X \text{ ou } x \in Y$$

$$x \in X \implies w \in f(X)$$

$$x \in Y \implies w \in f(Y)$$

$$\Rightarrow w \in f(X) \cup f(Y)$$

Logo $f(X \cup Y) \subset f(X) \cup f(Y)$

$$z \in f(X) \cup f(Y) \implies z \in f(X) \text{ ou } z \in f(Y)$$

$$z \in f(X) \implies \exists x \in X; z = f(x)$$

$$z \in f(Y) \implies \exists y \in Y; z = f(y)$$

$$\implies \exists w \in (X \cup Y); z = f(w)$$

$$\implies z \in f(X \cup Y)$$

Logo $f(X \cup Y) \supset f(X) \cup f(Y)$, Portanto, $f(X \cup Y) = f(X) \cup f(Y)$.

Demonstração I2) $f(X \cap Y) \subset f(X) \cap f(Y)$

$$w \in f(X \cap Y) \implies \exists x \in X \cap Y; w = f(x)$$

$$\Rightarrow x \in X \ e \ x \in Y$$

$$x \in X \implies w \in f(x)$$

$$x \in Y \implies w \in f(y)$$

$$\Rightarrow w \in f(x) \cap f(y)$$

Logo $f(X \cap Y) \subset f(X) \cap f(Y)$.

Demonstração I3) $X \subset Y \Rightarrow f(X) \subset f(Y)$

$$w \in f(X) \Rightarrow \exists x \in X; w = f(x)$$

 $x \in X \Rightarrow x \in Y, pois, X \subset Y$
 $x \in Y \Rightarrow x \in f(Y)$

 $logo X \subset Y \Rightarrow f(X) \subset f(Y)$.

Demonstração I4) $f(\emptyset) = \emptyset$

Definição 5 Seja $f: A \to B$ uma função $e Y \subset B$. A **imagem inversa** de $Y \acute{e}$ o conjunto $f^{-1}(Y)$, formado por os $x \in A$ tais que $f(x) \in Y$. Assim:

$$f^{-1}(Y) = \{ x \in A; f(x) \in Y \}$$

Dada a $f: A \rightarrow B$ e indicando Y e Z subconjuntos de B, temos:

Inv1)
$$f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$$

Inv2) $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
Inv3) $f^{-1}(CY) = Cf^{-1}(Y)$
Inv4) $Y \subset Z \Rightarrow f^{-1}(Y) \subset f^{-1}(Z)$
Inv5) $f^{-1}(B) = A$
Inv6) $f^{-1}(\emptyset) = \emptyset$

Demontração Inv1) $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$

$$x \in f^{-1}(Y \cup Z) \Leftrightarrow f(x) \in Y \cup Z$$

$$\Leftrightarrow f(x) \in Y \text{ ou } f(x) \in Z$$

$$\Leftrightarrow x \in f^{-1}(Y) \text{ ou } x \in f^{-1}(Z)$$

$$\Leftrightarrow x \in f^{-1}(Z) \cup f^{-1}(Z)$$

$$Logo\ f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$$

Demonstração Inv2) $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$

$$\begin{aligned} x \in f^{-1}(Y \cap Z) &\Leftrightarrow f(x) \in Y \cap Z \\ &\Leftrightarrow f(x) \in Y \ e \ f(x) \in Z \\ &\Leftrightarrow x \in f^{-1}(Y) \ e \ x \in f^{-1}(Z) \\ &\Leftrightarrow x \in f^{-1}(Z) \cap f^{-1}(Z) \end{aligned}$$

Logo
$$f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$$

Demonstração Inv3) $f^{-1}(CY) = Cf^{-1}(Y)$

$$x \in f^{-1}(\mathbb{C}Y) \iff f(x) \in \mathbb{C}Y$$

$$\Leftrightarrow f(x) \ nao \in Y$$

$$\Leftrightarrow x \ nao \in f^{-1}(Y)$$

$$\Leftrightarrow x \in \mathbb{C}f^{-1}(Y)$$

$$Logo\ f^{-1}(CY) = Cf^{-1}(Y)$$

Demonstração Inv4) $Y \subset Z \Rightarrow f^{-1}(Y) \subset f^{-1}(Z)$

$$x \in f^{-1}(Y) \Leftrightarrow f(x) \in Y$$

 $\Rightarrow f(x) \in Z, pois, Y \subset Z$
 $f(x) \in Z \Leftrightarrow x \in f^{-1}(Z)$

$$Logo\ Y\subset Z\Rightarrow f^{-1}(Y)\subset f^{-1}(Z)$$

Demonstração Inv5) $f^{-1}(B) = A$

$$x \in f^{-1}(B) \Leftrightarrow f(x) \in B$$

 $\Leftrightarrow x \in A$

$$Logo\ f^{-1}(B) = A$$

Função Inversa

proposição 1) Uma função possui inversa à esquerda, se e somente se, é injetiva.

proposição 2) Uma função possui inversa à direita, se e somente se, é sobrejetiva.

Segue das duas proposiçãoes anteriores que $f:A\to B$ possui inversa, se e somente se, é bijetiva

4 NÚMEROS REAIS

Em nosso trabalho iremos considerar já conhecidas as propriedades de um corpo ordenado, assim tambem como suas consequencias. E consetraremos nossos estudos na propriedade que permite distinguir o \mathbb{R} de \mathbb{Q} , descrevendo um corpo ordenado completo.

\mathbb{R} é um corpo ordenado completo

Um conjunto $X \in \mathbb{R}$ é **limitado superiomente** quando existe algum $b \in \mathbb{R}$ tal que $x \le b$ para todo $x \in X$. Neste caso, diz-se que b é uma **cota superior** de X.

Definição 6 Seja K um corpo ordenado $e X \subset K$ um conjunto limitado superiomente. Um elemento $b \in K$ chama-se **extremo superior ou supremo** quando b é a menor das cotas superiores de X em K.

Escrevemos $b = \sup X$ para indicar que b é o supremo do conjunto X. As condições necessárias e suficientes que caracterizam o supremo podem, portanto, ser escritas da seguinte forma:

S1.
$$x \in X \Rightarrow x \leq \sup X$$

S2.
$$c \ge x$$
 para todo $x \in X \Rightarrow c \ge \sup X$

A condição S2 pode ser reformulada assim:

S2'. Se $c < \sup X$ então existe $x \in X$ tal que c < x

Proposição 4 O supremo de um conjunto, quando existe, é único.

Prova Por contradição, tomemos b e b' em K, que cumpram as condições S1 e S2. de imediato temos que $b \ge b'$ e $b' \ge b$, ou seja, b = b'. Portanto temos que supremo de um conjunto, quando existe, é único.

Um conjunto $Y \in \mathbb{R}$ é **limitado inferiomente** quando existe algum $a \in \mathbb{R}$ tal que $y \ge a$ para todo $y \in Y$. Neste caso, diz-se que a é uma **cota inferior** de Y.

Definição 7 Seja K um corpo ordenado e $Y \subset K$ um conjunto limitado inferiormente. Um elemento $a \in K$ chama-se **extremo inferior ou infemo** quando a é a maior das cotas inferiores de Y em K. Escrevemos $a = \inf Y$ para indicar que a é o infemo do conjunto Y. As condições necessárias e suficientes que caracterizam o infemo podem, portanto, ser escritas da seguinte forma:

$$I1.y \in Y \Rightarrow y \ge \inf Y$$

I2. $c \le y$ para todo $y \in Y \Rightarrow c \le \inf Y$

A condição I2 pode ser reformulada assim:

I2'. Se $c > \inf Y$ então existe $y \in Y$ tal que c > y

A afirmação de que o corpo ordenado \mathbb{R} é completo significa que todo conjunto não-vazio, limitado superiomente, $X \subset \mathbb{R}$ possui supremo $b = \sup X \in \mathbb{R}$. Analogamente em todo conjunto não-vazio, limitado inferiomente, $X \subset \mathbb{R}$ possui ínfimo.

Teorema 2 (Intervalos encaixados) Dada uma sequencia decrescente $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$ de intervalos limitados e fechados $I_n = [a_n, b_n]$ existe pelo menos um numero real c tal que $c \in I_n$ para todo $n \in \mathbb{N}$.

Prova As inclusões $I_n \supset I_{n+1}$ significam que

$$a_1 < a_2 < \cdots < a_n < \cdots < b_n < \cdots < b_2 < b_1$$
.

O conjunto $A = \{a_1, a_2, ..., a_n, ...\}$ é, portanto limitado superiomente. Seja $c = \sup A$. Evidentimente, $a_n \le c$ para todo $n \in \mathbb{N}$. Além disso, como cada b_n é cota superior de A, temos $c \le b_n$ para todo $n \in \mathbb{N}$. Portanto $c \in I_n$ qualquer que seja $n \in \mathbb{N}$.

Problemas Resolvidos

01.Sejam $X \subset \mathbb{R}$ não vazio, limitado superiormente e c um número real. Tem-se $c \leq \sup X$ se, somente se, para cada $\varepsilon > 0$ pode se achar $x \in X$ tal que $c - \varepsilon < x$. Enuncie e demonstre um resultado análogo com inf em vez de sup.

Solução Sejam $Y \subset \mathbb{R}$ não vazio, limitado inferiormente e c um número real. tem-se $c \ge \inf Y$ se, somente se, para cada $\varepsilon > 0$ pode se achar $y \in Y$ tal que $c + \varepsilon > y$

Temos que se $c > \inf Y$ então existe $y \in Y$ tal que c > y, $\log c + \varepsilon > y$. e se $c = \inf Y$ e $\varepsilon > 0$ então existe $y \in Y$ tal que $c + \varepsilon > y$. Portanto $c \ge \inf Y$ implica que para cada $\varepsilon > 0$ pode se achar $y \in Y$ tal que $c + \varepsilon > y$.

Temos que se para cada $\varepsilon > 0$ pode se achar $y \in Y$ tal que $c + \varepsilon > y$. logo $c \ge y$ e $y \ge \inf Y$, portanto $c \ge \inf Y$.

02. Sejam $A \subset B$ conjuntos não vazios limitados de numeros reais. Prove que $\inf B \leq \inf A \leq \sup A \leq \sup B$.

Solução $a \in A$ implica que $\inf A \le a \le \sup A$, $\log o \inf A \le \sup A$. $\sup B \ge a$ para todo $a \in A$, $\log o \sup B \ge \sup A$. $\inf B \le a$ para todo $a \in A$, $\log o \inf B \le \inf A$. portanto temos que $\inf B \le \inf A \le \sup A \le \sup B$.

03. Sejam A, B cojuntos não-vazios de numeros reais, tais que $x \in A, y \in B \Rightarrow x \leq y$. Prove que $\sup A \leq \inf B$. Prove que $\sup A = \inf B$ se, e somente se, para todo $\varepsilon > 0$ dado, podem se obter $x \in A$ e $y \in B$ tais que $y - x < \varepsilon$.

Solução $x \ge y$, implica que todo $y \in B$ é cota superior do cojunto A. Portanto $\sup A \ge y$. $\sup A \ge y$ implica que $\sup A$ é cota inferior do cojunto B. Portanto $\sup A \ge \inf B$.

04.Dado $A \subset \mathbb{R}$ não-vazio, limitado inferiormente, seja $-A = \{-x; x \in A\}$. Prove que -A é limitado superiormente e que $\sup(-A) = -\inf A$.

Solução Para todo $x \in A$ temos que $x \ge c = \inf A$. Logo $-c \ge -x$, para todo $-x \in -A$. Portanto A é limitado superiomente. $-c \ge -x$, pra todo $-x \in -A$, implica $-c \ge \sup(-A)$. Suponhamos que $-c = -\inf A > \sup(-A)$, vamos ter que $\sup(-A) > \inf A$, que implica que $-\sup(-A) > x$, chegando a contradição de que $-x > \sup(-A)$. Portanto $-c = \sup(-A) = -\inf A$.

5 SEQUENCIA DE NÚMEROS REAIS

Uma **sequencia** de numeros reais é a função $x : \mathbb{N} \longrightarrow \mathbb{R}$ que associa cada numero natural n um numero real x_n , chamado o n-ésimo termo da sequencia. Escreve-se $(x_1, x_2, ..., x_n, ...)$ ou $(x_n)_{n \in \mathbb{N}}$ ou (x_n) para indicar uma sequencia.

Limite de uma sequencia

Dizemos que a sequencia (x_n) é **limitada superiormente** quando existe $a \in \mathbb{R}$ tal que $a \ge x_n$ para todo $n \in \mathbb{N}$. E dizemos que a sequencia (x_n) é **limitada inferiormente** quando existe $b \in \mathbb{R}$ tal que $b \le x_n$ para todo $n \in \mathbb{N}$. Diz-se que a sequencia é **limitada** quando existe $a, b \in \mathbb{R}$ tais que $a \le x_n \le b$ para todo $n \in \mathbb{N}$. Isto quer dizer que todos os os termos da sequencia pertencem ao intervalo [a,b]

Definição 8 Dada uma sequencia $x = (x_n)_{n \in \mathbb{N}}$, uma subsequencia de x é a restrição da função x a um subconjunto infinito $\mathbb{N}' = \{n_1 \le n_2 \le \cdots \le n_k \le \cdots\}$ de \mathbb{N} . Escreve-se $x' = (x_n)_{n \in \mathbb{N}'}$ ou $(x_{n_1}, x_{n_2}, ..., x_{n_k}, ...)$ ou $(x_k)_{k \in \mathbb{N}}$ para indicar a subsequencia $x' = x | \mathbb{N}'$. A notação $(x_k)_{k \in \mathbb{N}}$ mostra como uma subsequencia pode ser considerada como uma sequencia, isto é, uma função cujo dominio é \mathbb{N}

Definição 9 Diz-se que o numero real a é limite da sequencia (x_n) quando, para todo numero real $\varepsilon > 0$ dado arbitrariamente, pode se obter $n_0 \in \mathbb{N}$ tal que todos os termos x_n com indice $n > n_0$ cumprem a condição $|x_n - a| < \varepsilon$. Escreve-se então $a = \lim x_n$.

$$a = \lim x_n$$
 Ξ . $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}; n > n_0 \Rightarrow |x_n - a| < \varepsilon$

Esta definição significa que, para valores suficientemente grande de n, os termos x_n tornam-se e se mantêm tão proximos de a quanto se deseje. Convém lembrar que $|x_n-a|<\varepsilon$ é o mesmo que $a-\varepsilon< x_n< a+\varepsilon$, isto é, $x_n\in (a-\varepsilon,a+\varepsilon)$.

Teorema 3 (unicidade de limite) Uma sequenccia não pode convergir para dois limites distintos.

Prova Se temos $\lim x_n = a$ e $\lim x_n = b$. Dado $b \neq a$ podemos tomar $\varepsilon > 0$ tal que os intervalos $I = (a - \varepsilon, a + \varepsilon)$ e $J = (b - \varepsilon, b + \varepsilon)$ sejam disjuntos. Existe $n_0 \in \mathbb{N}$ tal que $n > n_0$ implica que $x_n \in I$. Então, para todo $n > n_0$ temos $x_n \notin J$. Logo vamos ter $\lim x_n \neq b$.

Teorema 4 Se $\lim x_n = a$ então toda subsequencia de (x_n) converge para o limite de a.

Prova Seja $(x_{n_1}, x_{n_2}, ..., x_{n_k}, ...)$ a subsequencia. Dado qualquer intervalo aberto I de centro a, existe $n_0 \in \mathbb{N}$ tal que todos os termos x_n . com $n > n_0$, pertencem a I. Em particular, todos os termo x_{n_k} , com $n_k > n_0$ também pertencem a I. Logo $\lim x_{n_k} = a$.

Limites e desigualdade

Seja P uma propriedade referente aos termos de uma sequencia (x_n) . Diremos que "para todo n suficientemente grande x_n goza propriedade P"para signicar que "existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \Rightarrow x_n$ goza da propriedade P."

Teorema 5 Seja $a = \lim x_n$. Se b < a então, para todo n suficiente grande, tem-se $b > x_n$. analogamente, se a < b então $x_n < b$ para todo n suficientemente grande.

Prova Tomando $\varepsilon = a - b$, temos $\varepsilon > 0$ e $b = a - \varepsilon$. Pela definição de limite existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \Rightarrow a - \varepsilon < x_n < a + \varepsilon \Rightarrow b < x_n$. A outra afirmação se prova analogamente

Teorema 6 Teorema do sanduíche Se $\lim x_n = \lim y_n = a$ e $x_n < z_n < y_n$ para todo n suficientemente grande então $\lim z_n = a$

Prova Dado $\varepsilon > 0$, existem $n_1, n_2 \in \mathbb{N}$ tais que $n > n_1 \Rightarrow a - \varepsilon < x_n < a + \varepsilon$ e $n > n_2 \Rightarrow a - \varepsilon < y_n < a + \varepsilon$. Seja $n_0 = \max\{n_1, n_2\}$. Então $n > n_0 \Rightarrow a - \varepsilon < x_n < z_n < y_n < a + \varepsilon$ implica que $z_n \in (a - \varepsilon, a + \varepsilon)$, logo $\lim z_n = a$

Teorema 7 Se $\lim x_n = 0$ e (y_n) é uma sequência limitada (convergente ou não) então $\lim (x_n y_n) = 0$

Prova como (y_n) é limitada, existe c > 0 tal que $|y_n| \le c$. Dado arbitrariamente $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \Rightarrow |x_n| < \varepsilon/c$. Então $n > n_0 \Rightarrow |x_n \cdot y_n| = |x_n| \cdot |y_n| < (\varepsilon/c) \cdot c = \varepsilon$, $\log o \lim(x_n y_n) = 0$.

6 SÉRIES NUMÉRICAS

Uma serie numerica é uma soma $s = a_1 + a_2 + \cdots + a_n + \cdots$ com um numero infinto de parcelas. Para que isto faça sentido, poremos $s = \lim_{n \to \infty} (a_1 + \cdots + a_n)$. Como todo limite, este pode existir ou não. Por isso há séries convergentes e divergentes

Séries Convergentes

Dada uma sequência (a_n) de numéros reais, a partir dela formamos uma nova sequência (s_n) onde

$$s_1 = a_1, \quad s_2 = a_1 + a_2, \quad \dots, s_n = a_1 + a_2 + \dots + a_n, \quad \dots$$

Os numeros s_n chamam-se reduzidas ou somas parciais da série $\sum a_n$.

Definição 10 Dizemos que $\sum a_n$ é **convergente**, se existir $s = \lim_{n \to \infty} s_n$ e $s = \sum a_n = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_n + \cdots$ será chamado a soma da série. $\sum a_n$ é uma série é divergente quando $\limsup_n n$ ão existe.

Teorema 8 (Critério de comparação.) Sejam $\sum a_n$ e $\sum b_n$ séries de termos nãonegativos. Se existem c > 0 e $n_0 \in \mathbb{N}$ tais que $a_n \leq cb_n$ para todo $n > n_0$ então a convergencia de $\sum b_n$ implica a de $\sum a_n$, enquanto a divergência de $\sum a_n$ implica a de $\sum b_n$.

Prova sem perda de generalidade podemos supor $a_n \leq cb_n$ para todo $n \in \mathbb{N}$. Então as reduzidas s_n e t_n , de $\sum a_n$ e $\sum b_n$ respectivamente, formam sequência não-decrescentes tais que $s_n \leq ct_n$ para todo $n \in \mathbb{N}$. Como c > 0, (t_n) limitada implica (s_n) limitada e (s_n) ilimitada implica (t_n) ilimitada.

Teorema 9 O termo geral de série convergente tem limite zero

Prova Se a série $\sum a_n$ é convergente então, pondo $s_n = a_1 + \cdots + a - n$ existe $s = \lim_{n \to \infty} s_n$. Consideremos a sequência (t_n) , com $t_1 = 0$ e $t_n = s_{n-1}$ quando n > 1. Evidentemente $\lim t_n = s$ e $s_n - t_n = a_n$. Portanto $\lim a_n = \lim (s_n - t_n) = \lim s_n - \lim t_n = s - s = 0$.

Definição 11 Uma série $\sum a_n$ diz-se **absotutamente convergente** quando $\sum |a_n|$ converge.

7 CONCLUSÃO

Diante dos resultados obtidos acima, que foram devidamente selecionados e estudados por métodos didáticos, seminários e aulas especiais de esclarecimento com professor orientador, sendo enfatizado as técnicas de demonstrações e os métodos de solução de problemas teóricos de mátematica de forma que nos habituamos desde cedo a lidar com o jeito de trabalhar do matemático profissional, sanando as eventuais dúvidas que surgiam ao longo do estudo. Este relatório final descreve todo o trabalho realizado durante o projeto.

A escolha dos tópicos visou um equilíbrio entre a estrutura lógica do assunto e a utilidade em possíveis aplicações relacionadas com o projeto, e tal equilíbrio é de fundamental importância, uma vez que os assuntos são encadeados e dependentes e o excessivo aprofundamento num primeiro momento de um determinado tema em detrimento de outro poderia prejudicar a compreensão de certos tópicos no estudo subsequente, logo a estratégia adotada nos pareceu correta e foi bem aproveitada.

8 CRONOGRAMA

 $O\ desenvolvimento\ do\ projeto\ obedece\ o\ seguinte\ cronograma:$

Atividades		Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	Jul
Lógica Matemática												
Técnicas de Demonstração		X										
Conjuntos e Funções			X									
Conjuntos Enumeráveis e Não-enumeráveis				X								
Números Reais					X							
Sequências de números reais						X						
Séries de números reais							X					
Topologia na reta								X				
Limites de Funções									X			
Funções Contínuas										X	X	
Preparação da Apresentação Final para o Congresso				X								X
Elaboração do Relatório Parcial						X						
Elaboração do Relatório Final												X

9 REFERÊNCIAS

Referências

- [1] LIMA, Elon Lages, 1929- Análise real, 6a. ed., Coleção Matemática Universitária, IMPA, CNPq, 2000.
- [2] LIMA, Elon Lages, 1929- Curso de Análise, Vol. 1. 6a. edição. Rio de Janeiro: IMPA
- [3] LIMA, Elon Lages, Álgebra Linear, 4a. ed. Coleção Matemática Universitária, IMPA, CNPq, 2000.