UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE PETRÓLEO E GÁS CURSO DE ENGENHARIA DE PETRÓLEO E GÁS

IMPLEMENTAÇÃO DE MODELOS PARA O CÁLCULO DO PONTO DE OPERAÇÃO DE POÇOS DE PETRÓLEO E SELEÇÃO DO MELHOR MÉTODO DE ELEVAÇÃO ARTIFICIAL.

IGOR ADRIANO DE CARVALHO RODRIGUES

IGOR ADRIANO DE CARVALHO RODRIGUES 21352385

IMPLEMENTAÇÃO DE MODELOS PARA O CÁLCULO DO PONTO DE OPERAÇÃO DE POÇOS DE PETRÓLEO E SELEÇÃO DO MELHOR MÉTODO DE ELEVAÇÃO ARTIFICIAL.

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Petróleo e Gás da Universidade Federal do Amazonas, como parte dos requisitos para obtenção do grau de Bacharel em Engenharia de Petróleo e Gás.

Orientador: Prof. Ketson Patrick de Medeiros Freitas.

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Rodrigues, Igor Adriano de Carvalho

R696i

Implementação de modelos para o cálculo do ponto de operação de poços de petróleo e seleção do melhor método de elevação artificial. / Igor Adriano de Carvalho Rodrigues. 2018 114 f.: il. color; 31 cm.

Orientador: Ketson Patrick de Medeiros Freitas TCC de Graduação (Engenharia de Petróleo e Gás) -Universidade Federal do Amazonas.

1. ipr. 2. tpr. 3. métodos de elevação artificial. 4. simulador. 5. ponto de operação. I. Freitas, Ketson Patrick de Medeiros II. Universidade Federal do Amazonas III. Título

IGOR ADRIANO DE CARVALHO RODRIGUES

IMPLEMENTAÇÃO DE MODELOS PARA O CALCULO DO PONTO DE OPERAÇÃO DE POÇOS DE PETRÓLEO E SELEÇÃO DO MELHOR MÉTODO DE ELEVAÇÃO ARTIFICIAL

Trabalho de Conclusão de Curso, apresentado a Universidade Federal do Amazonas, como parte das exigências para a obtenção do título de Bacharel em Engenharia de Petróleo e Gás.

Manaus, 03 de <u>DEZEMBRO</u> de 2011.

Aprovado em 03 de dezembro de 2016.

BANCA EXAMINADORA

Nelson Police de M. Teitor Presidente da Banca Examinadora

Johns de laina Simas

Examinador 02

AGRADECIMENTOS

Agradeço, primeiramente, a Deus por me abençoar todos os dias e ter me dado força para percorrer essa jornada.

A minha família por sempre acreditar em mim, me apoiar e estar ao meu lado. A minha namorada, Carolina, por suas palavras, afeto, companhia e ter sempre me dado força durante os momentos mais difíceis ao longo desse caminho.

A todos os meus amigos e colegas dentro e fora da universidade que me deram um apoio enorme frente aos difíceis momentos de prova que recentemente estive enfrentando, demonstrando compaixão e se mobilizando para que os superasse a tempo de poder concluir mais uma etapa de minha vida.

A todos os professores e funcionários do curso por dedicarem o seu tempo pelo mesmo e proporcionarem tanto conhecimento para os alunos.

RESUMO

O impacto de cada um dos integrantes de um sistema de produção pode ser analisado através da análise nodal, sendo esta uma ferramenta muito importante no projeto de um poço. Atualmente existem diversos programas comerciais disponíveis no mercado, baseados em escoamento de fluidos, sendo amplamente utilizados na indústria não só para dimensionar corretamente a coluna de produção e os equipamentos de superfície, como também para encontrar o melhor ponto de operação para produção do poço. No entanto, ainda há uma escassez de ferramentas eficientes de baixo valor comercial ou gratuitas, para fins educativos em universidades. Além disso, ainda existe uma dúvida muito recorrente nos projetos de desenvolvimento da produção, que é a definição do método de elevação mais adequado a determinadas condições. Nesta etapa uma escolha errada pode implicar na elevação de custos operacionais e na redução de receitas por ineficiência por uma elevada frequência de falhas. Por outro lado, para que seja realizada a escolha do melhor método de elevação é importante identificar quais os principais fatores de influência. Os sistemas especialistas, são capazes de selecionar o melhor método a ser utilizado com base no conhecimento humano previamente armazenado em sistemas computadorizados, estes sistemas estão entre os critérios usados para realizar a escolha computacionalmente. O objetivo do presente trabalho, é desenvolver uma ferramenta de apoio didático implementando diversos modelos matemáticos para obtenção de curvas Inflow Performance Relationship (IPR) em seguida encontrar o ponto de equilíbrio do poço, tendo a TPR como um dado de entrada, para finalmente baseando-se na lógica boolena e fuzzy, escolher o método de elevação mais adequado caso o poço não seja surgente, através de planilhas e do Visual Basic for Applications (VBA) da plataforma Microsoft Excel, programa extensamente difundido na maioria das universidades brasileiras. A ferramenta inclui informações sobre a capacidade operacional de cada método de elevação que quando comparadas a determinados parâmetros de entrada indicam qual método seria mais adequado. E os resultados referentes ao ponto de equilíbrio podem ser analisados, modificados e comparados graficamente.

Palavras-chave: IPR, TPR, métodos de elevação artificial, simulador, ponto de operação.

ABSTRACT

The impact of each of the integrant of a production system can be analyzed through nodal analysis, which is a very important tool in the design of a well. Currently there are several commercial programs available on the market, based on fluid flow, being widely used in the industry not only to correctly dimension the production column and surface equipment, but also to find the best operating point for well production. However, there is still a shortage of efficient tools of low commercial or free value, for educational purposes in universities. In addition, there is still a very recurrent doubt in production development projects, which is the definition of the method of elevation most appropriate to certain conditions. At this stage, a wrong choice can lead to higher operating costs and reduced revenues due to inefficiency due to a high frequency of failures. On the other hand, in order to choose the best lifting method, it is important to identify the main influence factors. Expert systems are able to select the best method to be used based on human knowledge previously stored in computerized systems, these systems are among the criteria used to make the choice computationally. The objective of the present work is to develop a didactic support tool implementing several mathematical models to obtain Inflow Performance Relationship (IPR) curves and then find the equilibrium point of the well, taking the TPR as an input data, if in the boolean and fuzzy logic, choose the most appropriate elevation method if the well is not in the works, through spreadsheets and Visual Basic for Applications (VBA) of the platform Microsoft Excel, a program widely distributed in most Brazilian universities. The tool includes information on the operational capacity of each lifting method which, when compared to certain input parameters, indicates which method would be most appropriate. And the results concerning the equilibrium point can be analyzed, modified and compared graphically.

Key words: IPR, TPR, artificial elevation methods, simulator, point of operation.

LISTA DE ABREVIAÇÕES

BCP Bombeio por Cavidades Progressivas

BCS Bombeio Centrífugo Submerso

BM Bombeio Mecânico

BSW Basic Sediments and Water

IP Índice de Produtividade

IPR Inflow Performance Relationship

RGO Razão Gás-Óleo

RGL Razão Gás-Líquido

TPR Tubing Performance Relationship

WOR Razão àgua- Óleo

LISTA DE SIGLAS

A Área de drenagem (km²)

^oAPI Densidade API do óleo

B_o Fator volume formação do óleo

β Abertura do choke (%)

C Parâmetro C da Equação de Fetkovich [STB/(dia-psi²ⁿ)]

c_t Compressibilidade Total do fluido (psi⁻¹)

D_{choke} Diâmetro do choke (ft)

EF Eficiência

h Espessura do reservatório (ft)

IP Índice de produtividade [STB/(dia-psi)]

k Permeabilidade do reservatório (mD)

L Profundidade do poço (m)

n Número n da Equação de Fetkovich

P_b Pressão de bolha (psi)

P_{dc} Pressão antes do choke (psi)

Pe Pressão do Reservatório (psi)

P_r Pressão do Reservatório (psi)

Pressão de fluxo de fundo de teste (psi)

P_{wh} Pressão de cabeça do poço (psi)

P_{wf} Pressão de fluxo de fundo (psi)

Q_o Vazão de óleo (bpd)

Q_{teste} Vazão de óleo de teste (bpd)

r_e Raio externo do reservatório (ft)

r_w Raio do poço (ft)

S Fator película

T Temperatura do Reservatório (°F)

Tup Temperatura de Superfície (°F)

KL Holdup Líquido

γrg Densidade Relativa do Gás

pg Densidade do Gás (lb/ft³)

Φ Porosidade do meio

LISTA DE FIGURAS

Figura 1 - Curva IPR típica para poços de óleo
Figura 2 - Curvas IPR Linear com dano e sem dano típica para poços de óleo 23
Figura 3 - Influência da alteração da permeabilidade ao redor do poço no perfil de
pressões
Figura 4 - Curva oriunda da união do IPR Linear com o Método de Vogel - Fonte: GUO,
LYONS e GHALAMBOR, 2007
Figura 5 - Sistema de elevação por BCP e seus principais componentes (ASMANN,
2005)
Figura 6 - Sistema completo de bombeio mecânico. Fonte: Adaptado de Thomas (2001)
Figura 7- Típica unidade de bombeio. Fonte: Thomas e outros autores, 2004
Figura 8 - Partes da bomba do método BM. Fonte: Thomas (2001)
Figura 9 - Curso ascendente da unidade de bombeio. Fonte: Oliveira, 2010 40
Figura 10 - Curso descendente da unidade de bombeio. Fonte: Oliveira, 2010
Figura 11 - Principais componentes do sistema BCS. Fonte: Thomas (2001)
Figura 12 - Sistema de gás lift. Fonte: Thomas (2001)
Figura 13 - Exemplos de funções de pertinência. Fonte: Elaborada pelo autor 50
Figura 14 - Escolha do Método na interface da ferramenta proposta
Figura 15 - Escolha do tipo de Escoamento
Figura 16 - Dados de entrada para a TPR
Figura 17 - Escolha do tipo de regime para fluxo monofásico
Figura 18 - Exemplo de dados de entrada para fluido monofásico, regime transiente 54
Figura 19 - Resposta do fluxo monofásico para regime transiente
Figura 20 - Teste de sensibilidade modificando a pressão estática
Figura 21 - Comparação entre os regimes monofásicos
Figura 22 - Escolha do modelo para fluxo multifásico
Figura 23 - Exemplo dados de entrada para fluido multifásico, modelo de Vogel 57
Figura 24 - Resposta do fluxo multifásico para modelo de Vogel
Figura 25 - Comparação entre os modelos multifásicos
Figura 26 - Dados de entrada e resposta do Método II – previsão de comportamento 59
Figura 27 - Planilha de cálculos para previsão do ponto de teste para fluxo monofásico.
60

Figura 28 - lanilha de cálculos para previsão do ponto de teste para fluxo multifásico. 60
Figura 29 - Botões criados através de código VBA
Figura 30 - Exemplo de utilização da função INTERPOLAR
Figura 31 - Utilização das funções intersectcomplex e SEERRO
Figura 32 - Utilização dos seguimentos de uma curva para função intersectcomplex 65
Figura 33 - Utilização da função SE para escolha do seguimento correto na função
intersectcomplex
Figura 34 - Vazão versus profundidade para o bombeio mecânico
Figura 35 - Erro entre vazão máxima real e prevista para modelo de Vogel 69
Figura 36 - Utilização das funções "MENOR" e "PROVC" do Microsoft Excel 70
Figura 37 - Utilização da função solver para encontrar os valores de C e n
Figura 38 - Curva IPR gerada para modelo de IPR linear em regime transiente. Fonte:
Elaborada pelo autor
Figura 39 - Curva IPR calculada por Guo (2017) para regime transiênte. Fonte: Guo
(2017)
Figura 40 - Comparação entre os resultados obtidos pela ferramenta e por GUO (2017).
Figura 41 - Comparação entre os resultados obtidos pela ferramenta e por GUO (2017).
Figura 42 - Curva IPR gerada para modelo de IPR linear em regime estacionário. Fonte:
Elaborada pelo autor
Figura 43 - Curva IPR calculada por Guo (2017) para regime estacionário. Fonte: Guo
(2017)
Figura 44 - Comparativo das respostas dos regime transiente, permanente e pseudo-
permanente para os dados propostos por GUO (2017)
Figura 45 - Teste de sensibilidade, regime estacionário, variando a permeabilidade efetiva
(k)
Figura 46 - Teste de sensibilidade, regime estacionário, variando a pressão estática do
reservatório (Pe)
Figura 47 - Teste de sensibilidade, regime estacionário, variando o fator volume formação
(Bo)
Figura 48 - Teste de sensibilidade, regime estacionário, variando a viscosidade do fluido
(μο)
Figura 49 - Teste de sensibilidade, regime estacionário, variando o raio do poço (rw). 79

Figura 50 - Teste de sensibilidade, regime estacionário, variando a área de drenagem (A).
Figura 51 - Teste de sensibilidade, regime transiente, variando a porosidade (Φ) 80
Figura 52 - Teste de sensibilidade, regime transiente, variando a compressibilidade total
(ct)
Figura 53 - Teste de sensibilidade, regime transiente, variando o tempo (t)
Figura 54 - Comparação da curva IPR obtida (direita) com a curva calculada por
SANTOS (esquerda) para o modelo de Vogel
Figura 55 - Comparação da curva IPR obtida (direita) com a curva do primeiro ponto de
teste sugerido por GUO (esquerda) para o modelo de Vogel
Figura 56 - Comparação da curva IPR obtida (direita) com a curva do segundo ponto de
teste sugerido por GUO (esquerda) para o modelo de Vogel
Figura 57 - Comparação da curva IPR obtida (direita) com a curva do terceiro ponto de
teste sugerido por GUO (esquerda) para o modelo de Vogel
Figura 58 - Comparação da curva IPR obtida (direita) com a curva do primeiro ponto de
teste sugerido por VELÁZQUEZ (esquerda) para o modelo de Vogel
Figura 59 - Comparação da curva IPR obtida por SANTOS com a curva de BEGGS para $$
o modelo de Fetkovich
Figura 60 - Curva IPR obtida pela ferramenta para os pontos fornecidos por SANTOS e
BEGGS para o modelo de Fetkovich
Figura 61 - Comparação da curva IPR obtida (direita) com a curva para os pontos de teste
sugerido por GUO (esquerda), modelo de Fetkovich
Figura 62 - Comparação dos resultados obtidos pela ferramenta e os alcançados por
VELÁZQUEZ em sua tese para Fetkovich
Figura 63 - Comparação dos resultados obtidos pela ferramenta e os alcançados por
BETÔNICO (2011) para Standing. 87
Figura 64 - Comparação dos resultados obtidos pela ferramenta e os alcançados por
VELÁZQUEZ (1987), para Standing
Figura 65 - Resultados encontrados por BETÔNICO (2011), para o modelo de Patton $\&$
Goland
Figura 66 - Resultados encontrados pela ferramenta para o primeiro ponto de teste
fornecido por BENTÔNICO (2011). Modelo de Patton & Goland
Figura 67 - Resultados encontrados pela ferramenta para o segundo ponto de teste
fornecido por BENTÔNICO (2011). Modelo de Patton & Goland

Figura 68 - Resultado obtido para a curva IPR para o modelo de Wiggins 89
Figura 69 - Resultado obtido para a curva IPR para o modelo de Klins-clark
Figura 70 - As curvas de entrada previstas pelos diferentes métodos utilizados em
comparação com os dados de campo reais
Figura 71 - O percentual médio de erros absolutos para todos os modelos
Figura 72 - Regressão linear para solução da equação de Fetkovich
Figura 73 – Exemplo de pontos de teste escolhidos com resposta da curva IPR não
desejada
Figura 74 – Segundo Exemplo de Pontos de teste escolhidos com resposta da curva IPR
não desejada
Figura 75 - Exemplo de Pontos de teste escolhidos com resposta desejada para curva IPR.
96
Figura 76 - Ilustração dos pontos que obtiveram os melhores resultados para os métodos
que necessitam de apenas um ponto
Figura 77 - Erro médio absoluto para Standing
Figura 78 - Erro médio absoluto para Vogel
Figura 79 - Erro médio absoluto para Patton & Goland
Figura 80 - Erro médio absoluto para Fetkovich
Figura $81-$ Comparação dos resultados encontrados por VELÁZQUEZ, 1987 à esquerda
e pela ferramenta à direita
Figura 82 - Curva IPR para modelo de Vogel combinado. Método 2 de cálculo 100
Figura 83 - Curva IPR para modelo de Vogel. Método 2 de cálculo
Figura 84 - Curva IPR para modelo Linear. Método 2 de cálculo
Figura 85 - Curva IPR para modelo de Standing. Método 2 de cálculo

LISTA DE TABELAS

Tabela 1 - Limites operacionais dos métodos de elevação artificial
Tabela 2 - Parâmetros com boa eficiência em todo o intervalo de operação 68
Tabela 3 - Parâmetros classificados através das funções de pertinência
Tabela 4 - Dados do exemplo resolvido na bibliografia para o caso Linear regime
transiênte. Fonte: GUO (2017)
Tabela 5 - Resultados obtidos pela ferramenta e os obtidos por Guo para regime
transiênte
Tabela 6 - Dados do exemplo resolvido na bibliografia para o caso Linear regime pseudo-
estacionário. Fonte: GUO (2017)
Tabela 7 - Dados do exemplo resolvido na bibliografia para o caso Linear regime pseudo-
estacionário. Fonte: SANTOS (2016)
Tabela 8 - Comparação do índice IP encontrados por diferentes autores
Tabela 9 - Resultados obtidos pela ferramenta e os obtidos por Guo para regime pseudo-
permanente
Tabela 10 - Resultados obtidos pela ferramenta e os obtidos por SANTOS para regime
transiente
Tabela 11 - Resultados obtidos pela ferramenta e por Guo (2017) para regime
estacionário
Tabela 12 - Resumo dos testes de sensibilidade para o regime estacionário
Tabela 13 - Resumo dos testes de sensibilidade para o regime transiente
Tabela 14 - Confiabilidade da ferramenta para o modelo de IPR linear 81
Tabela 15 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo
modelo de Vogel
Tabela 16 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo
modelo de Fetkovich. 84
Tabela 17 - Resultados encontrados pela ferramenta para os pontos de teste propostos por
SANTOS, para o modelo de Fetkovich.
Tabela 18 - Resultados encontrados pela ferramenta para os pontos de teste propostos por
GUO, para o modelo de Fetkovich.
Tabela 19 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo
modelo de Standing

Tabela 20 - Resultados encontrados pela ferramenta para os pontos de teste J	propostos por
BETÔNICO, para o modelo de Standing.	87
Tabela 21 - Resultados encontrados pela ferramenta para os pontos de teste j	propostos por
VELÁZQUEZ (1987), para o modelo de Standing	87
Tabela 22 - Resumo dos valores sugeridos por outras literaturas para encontr	ar a IPR pelo
modelo de Patton & Goland.	88
Tabela 23 - Vazão máxima para os pontos de teste de BENTÔNICO (2011). Modelo de
Patton & Goland.	89
Tabela 24 - Dados de entrada inseridos para obtanção da curva IPR para	o modelo de
Wiggins	89
Tabela 25 - Pontos de teste de produção real. Fonte: FATTAH, 2012	91
Tabela 26 - Previsão do melhor desempenho encontrado referente a vazão j	para o estudo
de caso, através da otimização das curvas para cada modelo	93
Tabela 27 - Previsão do melhor desempenho encontrado referente ao erro a	absoluto para
o estudo de caso, através da otimização das curvas para cada modelo	93
Tabela 28 - Dados de entrada para as diferentes curvas IPR utilizando a prev	isão do ponto
de teste.	99
Tabela 29 - Parâmetros de entrada para o primeiro caso	102
Tabela 30 - Limite de profundidade para o BM. Primeiro caso	102
Tabela 31 - Etapa eliminatório para o primeiro caso.	103
Tabela 32 - Etapa classificatória para o primeiro caso.	103
Tabela 33 - Média da Pontuação classificatória para o primeiro caso	104
Tabela 34 - Parâmetros de entrada para o segundo caso.	104
Tabela 35 - Parâmetros de entrada para o terceiro caso	105
Tabela 36 - Parâmetros de entrada para o quarto caso.	105
Tabela 37 - Etapa eliminatório para o segundo caso	106
Tabela 38 - Etapa eliminatório para o terceiro caso.	107
Tabela 39 - Etapa eliminatório para o quarto caso.	107
Tabela 40 - Etapa classificatória para o segundo caso	108
Tabela 41 - Etapa classificatória para o terceiro caso.	108
Tabela 42 - Etapa classificatória para o quarto caso	108
Tabela 43 - Resultados gerais e individuais de comparação da escolha dos e	engenheiros e
do método mais adequado apontado pela ferramenta	109

SUMÁRIO

1.	IN	ΓRΟΙ	DUÇÃO	18
2.	RE	VISÃ	O BIBLIOGRÁFICA	20
	2.1.	INF	FLOW PERFORMANCE RELATIONSHIP	20
	2.2.	IPR	R LINEAR	21
	2.3.	IPR	R PARA RESERVATÓRIOS BIFÁSICOS	24
	2.3	.1.	MÉTODO DE VOGEL	24
	2.3	.2.	MÉTODO DE WIGGINS	27
	2.3	.3.	MÉTODO DE KLINS-CLARK	28
	2.3	.4.	MÉTODO DE PATTON & GOLAND	29
	2.3	.5.	MÉTODO DE STANDING	30
	2.3	.6.	MÉTODO DE FETKOVICH	32
	2.4.	DES	SEMPENHO DO RESERVATÓRIO	34
	2.5.	DES	SCRIÇÃO DOS MÉTODOS DE ELEVAÇÃO	34
	2.5	.1.	BOMBEIO POR CAVIDADES PROGRESSIVAS	34
	2.5	.1.1.	FUNCIONAMENTO	34
	2.5	.1.2.	PRINCIPAIS EQUIPAMENTOS	34
	2.5	.1.3.	VANTAGENS E DESVANTAGENS	35
	2.5	.1.4.	CARACTERÍSTICAS OPERACIONAIS	36
	2.5	.2.	BOMBEIO MECÂNICO	36
	2.5	.2.1.	FUNCIONAMENTO	36
	2.5	.2.2.	PRINCIPAIS EQUIPAMENTOS	37
	2.5	.2.3.	VANTAGENS E DESVANTAGENS	41
	2.5	.2.4.	CARACTERÍSTICAS OPERACIONAIS	41
	2.5	.3.	BOMBEIO CENTRÍFUGO SUBMERSO	42
	2.5	.3.1.	FUNCIONAMENTO	42
	2.5	.3.2.	PRINCIPAIS EQUIPAMENTOS	42
	2.5	.3.3.	VANTAGENS E DESVANTAGENS	44
	2.5	.3.4.	CARACTERÍSTICAS OPERACIONAIS	44
	2.5	.4.	GÁS LIFT CONTÍNUO	45
	2.5	.4.1.	FUNCIONAMENTO	45
	2.5	.4.2.	PRINCIPAIS EQUIPAMENTOS	46
	2.5	.4.3.	VANTAGENS E DESVANTAGENS	46
	2.5	.4.4.	CARACTRÍSTICAS OPERACIONAIS	47

2.6. SE	LEÇÃO DO MÉTODO DE OPERAÇÃO	47
2.7. LĆ	OGICA FUZZY	49
3. METO	DOLOGIA E DESENVOLVIMENTO DA FERRAMENTA PARA	
	NAÇÃO DE SURGÊNCIA DO POÇO E ESCOLHA DO MELHOR MI	
	ÇÃO	
3.1. MI	ETODO I – PONTOS DE TESTE COMO DADOS DE ENTRADA	
3.1.1.	FLUIDOS MONOFÁSICOS	
3.1.2.	FLUIDOS MULTIFÁSICOS	
	ETODO II – PREVISÃO DO PONTO DE TESTE E COMPORTAME HOR MODELO	
3.3. BC	OTÕES E CÓDIGOS DE ROTINAS VBA	60
3.3.1.	BOTÕES	61
3.3.1.1.	BOTÃO ATIVAR	61
3.3.1.2.	BOTÃO DESATIVAR	61
3.3.1.3.	BOTÃO SALVAR	61
3.3.1.4.	BOTÃO LIMPAR	61
3.3.1.5.	BOTÃO SOLVER	62
3.3.2.	CÓDIGOS DE ROTINA VBA	62
3.3.2.1.	CÓDIGO PROFBM	62
3.3.2.2.	CÓDIGO INTERPOLAR	63
3.3.2.3.	CÓDIGO INTERSECTCOMPLEX	64
3.4. ES	COLHA DO MÉTODO DE ELEVAÇÃO MAIS ADEQUADO	65
3.5. CC	OMPARAÇÃO COM DADOS REAIS	68
4. RESUL	TADOS E DISCURSÕES	71
4.1. RE	SULTADOS PARA IPR LINEAR	71
4.1.1.	RESULTADOS PARA IPR REGIME TRANSIENTE	71
4.1.2.	RESULTADOS PARA IPR REGIME PSEUDO-ESTACIONÁRIO	73
4.1.3.	RESULTADOS PARA IPR REGIME ESTACIONÁRIO	74
4.1.4.	RESULTADOS PARA OS TESTES DE SENSIBILIDADE	76
4.1.5.	VALIDAÇÃO DA FERRAMENTA PARA IPR LINEARES	81
4.2. RE	ESULTADOS PARA EQUAÇÃO DE VOGEL	81
4.3. RE	ESULTADOS PARA EQUAÇÃO DE FETKOVICH	84
4.4. RE	SULTADOS PARA EQUAÇÃO DE STANDING	86
4.5. RE	ESULTADOS PARA EQUAÇÃO DE PATTON & GOLAND	88
4.6. RF	ESULTADOS PARA EOUAÇÃO DE WIGGINS	80

4.7.	RESULTADOS PARA EQUAÇÃO DE KINS-CLARK	90
	RESULTADOS PARA AS COMPARAÇÃO DOS MODELOS CO IS	
	VALIDAÇÃO DA FERRAMENTA PARA IPR BASEADA EM FI TIFÁSICO	
	RESULTADOS PARA O MÉTODO DE PREVISÃO DE PONTO TE 99	OS DE
	RESULTADOS PARA A ESCOLHA DO MÉTODO DE ELEVA QUADO	,
5. CO	ONCLUSÃO E RECOMENDAÇÕES	110
REFER	RÊNCIAS BIBLIOGRÁFICAS	112

1. INTRODUÇÃO

A produção de petróleo é uma atividade essencial na economia contemporânea e possui uma enorme importância em praticamente todas as atividades humanas ao redor do mundo. Porém no último século ocorreu a intensificação da produção de petróleo, que ocasionou a depleção das reservas de fácil acesso e de menor custo associado.

Com isso as empresas produtoras, consequentemente precisam lidar com ambientes cada vez mais adversos e complexos que evidenciam a necessidade de uma otimização dos gastos relacionados com todas as etapas de criação de um poço e do aproveitamento de cada reserva explorada, além do desenvolvimento de novas tecnologias que sejam capazes de colocar em produção poços que até então não continham energia suficiente para produzir ou continuar produzindo.

Tendo em vista a complexidade das equações envolvidas e o grande número de informações para a previsão da surgência de um poço, a realização desse estudo torna-se inviável sem o auxílio de ferramentas computacionais. Nesse quesito, existem diversos simuladores comerciais de empresas renomadas que são utilizados no campo para atingir tal objetivo. Porém, ainda há uma carência de aplicações livres disponíveis para serem utilizadas em pesquisas e no aprendizado em universidades.

Segundo Beggs (1991), a produção de hidrocarbonetos necessita de energia para elevar o petróleo à superfície e superar as perdas de carga ao longo do caminho.

Quando o reservatório possui uma pressão suficientemente elevada, os fluidos nele presentes são elevados à superfície livremente, por meio da elevação natural. Os poços que produzem fluidos por elevação natural são chamados poços surgentes. Geralmente os poços de petróleo nos estágios iniciais de sua vida produtiva são surgentes. Quando a pressão no reservatório é baixa ou quando já em produção, a pressão no reservatório declina, o poço necessita de uma suplementação de energia natural através da elevação artificial. A elevação artificial do petróleo consiste na utilização de equipamentos e tecnologias para promover um aumento na vazão de poços de óleo ou gás.

Quanto a escolha do método de elevação mais adequado, para casos em que foi verificado a condição de não surgência, não existem fórmulas ou metodologias préestabelecidas, fica a critério do engenheiro com base em seus conhecimentos e em dados de campo tabelados dos intervalos de bom funcionamento de um determinado método de

elevação. Obviamente a experiência do engenheiro é um fator de grande importância nesta etapa.

Portanto, o presente trabalho tem como objetivo Geral desenvolver uma ferramenta capaz de encontrar o ponto de equilíbrio de um poço, caso exista e caso não exista, indicar o método de elevação mais adequado a determinadas condições, baseandose em um uma linguagem de programação de um *software* disponível na maioria das universidades, o *Visual Basic for Applications* (VBA) do Microsoft Excel e planilhas do próprio programa. Espera-se que esta ferramenta sirva para o auxílio didático, onde o aluno consiga comparar resultados obtidos manualmente com os resultados obtidos através desta ferramenta.

Os objetivos específicos deste trabalho são:

- Calcular a curva *Inflow Performance Relationship* (IPR) baseado em diversos modelos existentes;
 - Realizar comparações entre os modelos;
- Comparar os resultados obtidos através desta ferramenta com dados reais de campo;
 - Possibilitar a realização de testes de sensibilidade;
- Identificar os principais parâmetros a serem considerados na escolha de um método de elevação artificial;
- Desenvolver uma ferramenta para escolha do método de elevação adequado, composta por duas etapas, baseada em lógica de caráter eliminatório e lógica *fuzzy* para determinar o melhor método de elevação conforme critérios identificados nas referências bibliográficas pesquisadas.
- Validar os resultados encontrados através de comparações com resultados encontrados na literatura;

O presente capítulo descreve a motivação, o objetivo do trabalho e situa o leitor no contexto geral do problema. No Capítulo 2 são apresentados conceitos fundamentais à compreensão do problema. No Capítulo 3, são apresentados a metodologia empregada neste trabalho e a validação da ferramenta contra a literatura e dados reais de campo. No Capítulo 4 são mostradas as aplicações da ferramenta e os resultados dos estudos paramétricos. O Capítulo 5 apresenta as conclusões e sugestões para trabalhos futuros.

2. REVISÃO BIBLIOGRÁFICA

Neste capítulo foram abordados os aspectos teóricos fundamentais para o devido entendimento e desenvolvimento da ferramenta proposta nesse trabalho.

2.1. INFLOW PERFORMANCE RELATIONSHIP

O IPR é usado para avaliar o desempenho do reservatório em engenharia de produção. A curva IPR é uma apresentação gráfica da relação entre a pressão de fundo do poço e a taxa de produção de líquido. Uma curva IPR típica é mostrada na Figura 1. A magnitude da inclinação da curva IPR é chamada de "índice de produtividade" (IP ou J), isto é,

$$J = \frac{Q_o}{\left(P_e - P_{wf}\right)}$$
 Equação 2.1

Onde:

J = índice de produtividade, STB/day/psig

P_r = Pressão do reservatório (estática), psig

Qo = Taxa de fluxo de óleo no poço (vazão), STB/dia

Pwf = Pressão de fluxo de fundo, psig

Aparentemente, J é uma constante na região de fluxo de duas fases. Normalmente, as curvas IPR são construídas usando modelos de entrada de reservatórios, que podem ser de base teórica ou empírica. É essencial validar esses modelos com pontos de teste em simuladores de campo.

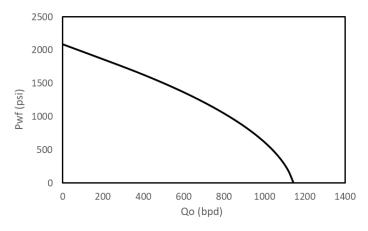


Figura 1 - Curva IPR típica para poços de óleo.

O índice de produtividade é geralmente medido durante um teste de produção no poço, onde o poço é fechado até que a pressão estática do reservatório P_r seja atingida. O poço é então deixado fluir a uma taxa de fluxo constante Q_o e uma pressão de fluxo de fundo estabilizada P_{wf} . É importante notar que o índice de produtividade é uma medida válida apenas se o poço estiver fluindo em condições de estado pseudo-estável. Portanto, a fim de medir com precisão o índice de produtividade de um poço, é essencial que o poço possa fluir a uma taxa constante por um período de tempo suficiente para atingir a condição do estado pseudo-estável.

Uma plotagem da pressão de fluxo de fundo, P_{wf} , versus a vazão de óleo, Q_o , de um poço de petróleo é chamada de *Inflow Performance Relationship* ou IPR. A curva IPR é construída para a pressão atual do reservatório ou para a futura pressão do reservatório. A atual curva IPR de um poço pode ser gerada através de vários métodos. Os métodos são agrupados em duas categorias principais: A primeira categoria, que usa parâmetros de reservatório, inclui os métodos integral e Fetkovitch. A segunda categoria inclui um conjunto de correlações empíricas do tipo Vogel.

Para construir a curva IPR de um poço usando o desempenho do poço, execute as seguintes etapas:

ullet Use a pressão estática do reservatório P_r e a taxa e pressão do poço estabilizado (Q_o & para calcular P_{wf}) para calcular J da seguinte forma:

$$J = \frac{Q_o}{\left(P_e - P_{wf}\right)}$$

 \bullet Construa a curva IPR assumindo vários valores de $P_{\rm wf}$ e calculando o Q_o correspondente da seguinte forma:

$$Q_o = J(P_e - P_{wf})$$
 Equação 2.2

2.2. IPR LINEAR

Considerando-se o fluxo monofásico, este modelo é válido para reservatórios de óleo com óleo subsaturado, ou porções do reservatório onde a pressão está acima da pressão de bolha. Uma das equações mais utilizadas para descrever o fluxo em meios porosos é a Equação de Darcy. Essa proposição estabelece que a vazão resultante de líquido produzido na superfície será proporcional ao gradiente de pressão e ao produto da área transversal pela permeabilidade do meio. Além de ser inversamente proporcional a

viscosidade do fluido em questão. Essas equações definem o índice de produtividade (J *) para vazões com pressão de fluxo de fundo acima da pressão de bolha, como segue:

$$J *= \frac{Q_o}{(P_e - P_{wf})}$$

$$= \frac{kh}{162,6\beta_o \mu_o \left(\log t + \log \frac{k}{(\Phi \mu_o c_t r_w^2)} - 3,23 + 0,87S\right)}$$
Equação 2.3

Onde:

k = Permeabilidade efetiva, md

h =Espessura da zona de interesse, ft

 r_w = Raio do poço, ft

 c_t = Compressibilidade Total, psi⁻¹

S = Fator película

 B_o = Fator volume formação

 μ_o = Viscosidade do óleo, cp

Para um fluxo transiente radial em torno de um poço vertical,

$$J *= \frac{Q_o}{(P_e - P_{wf})} = \frac{kh}{162,61\beta_o\mu_o\left(\log t + \log\frac{k}{(\Phi\mu_o C_t r^2)} - 3,23 + 0,87S\right)}$$

Para um fluxo estacionário radial em torno de um poço vertical,

$$J *= \frac{Q_o}{\left(P_e - P_{wf}\right)} = \frac{kh}{141,2\beta_o \mu_o \left(ln\frac{r_e}{\left(r_w\right)} + S\right)}$$
 Equação 2.4

Para um fluxo pseudo-estacionário radial em torno de um poço vertical,

$$J *= \frac{Q_o}{\left(P_e - P_{wf}\right)} = \frac{kh}{141,2\beta_o \mu_o \left(ln\frac{r_e}{\left(r_w\right)} - \frac{3}{4} + S\right)}$$
 Equação 2.5

Como o índice de produtividade (J *) acima da pressão do ponto de bolha é independente da taxa de produção, a curva IPR para um único reservatório (líquido) de fase é simplesmente uma linha reta traçada da pressão do reservatório até a pressão do ponto de bolha. Se a pressão do ponto de bolha for 0 psig, o fluxo aberto absoluto (AOF) é o índice de produtividade (J *) vezes a pressão do reservatório. O desempenho desse reservatório em um gráfico P_{wf} x Q_o irá gerar uma linha reta de coeficiente angular de valor -1/IP. Para esse tipo de comportamento do reservatório atribui-se o nome de IPR

Linear. A Figura 2 apresenta um exemplo para o caso linear com dano e sem dano para os mesmos dados de entrada.

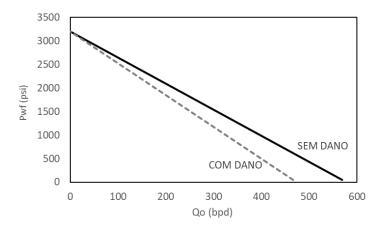


Figura 2 - Curvas IPR Linear com dano e sem dano típica para poços de óleo.

Darcy desenvolveu suas equações considerando em suas hipóteses que a toda a área de drenagem do reservatório teria permeabilidade constante. Podendo haver um aumente ou uma diminuição da permeabilidade absoluta ao redor do poço por conta de uma estimulação ou de danos à formação oriundos de outros processos prévios como a completação ou perfuração do poço.

Segundo BEGGS (1991), para uma vazão constante, um menor diferencial de pressão seria necessário se o poço fosse estimulado do mesmo modo que o valor necessário seria maior caso um dano estivesse presente. O número adimensional efeito película (*skin effect*) foi apresentado por Beggs como uma forma de contabilizar estas modificações do perfil de pressão ao longo do poço e correntes de estímulo ou dano.

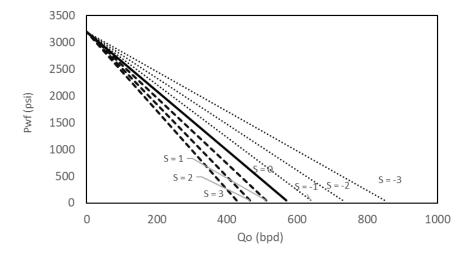


Figura 3 - Influência da alteração da permeabilidade ao redor do poço no perfil de pressões

2.3. IPR PARA RESERVATÓRIOS BIFÁSICOS

O modelo de IPR linear apresentado na seção anterior é válido para valores de pressão tão baixos quanto a pressão do ponto de bolha. Abaixo da pressão do ponto de bolha, o gás da solução escapa do óleo e se transforma em gás livre. O gás livre ocupa uma parte do espaço dos poros, o que reduz o fluxo de óleo. Este efeito é quantificado pela redução da permeabilidade relativa. Além disso, a viscosidade do óleo aumenta à medida que seu conteúdo de gás em solução cai. A combinação do efeito de permeabilidade relativa e do efeito de viscosidade resulta em uma menor taxa de produção de óleo em uma dada pressão de fluxo de fundo. Isto faz com que a curva IPR desvie da tendência linear abaixo da pressão do ponto de bolha, como mostrado na Figura 1. Quanto menor a pressão, maior o desvio. Se a pressão do reservatório for abaixo da pressão inicial de bolha, o fluxo de duas fases de óleo e gás existe em todo o domínio do reservatório e o reservatório é referido como um "reservatório bifásico".

Apesar de o IPR Linear descrever eficientemente a performance de reservatórios com óleo em condições de subsaturação, a presença de gás no reservatório modifica a relação do diferencial de pressão com a vazão de produção. Para tais casos, são apresentados apenas equações empíricas, que estão disponíveis para modelagem de IPR de reservatórios de duas fases. Essas equações empíricas incluem a equação de Vogel (1968) estendida por Standing (1971), a equação de Fetkovich (1973), a equação de Wiggins (1993), a equação de Klins-clark (1993) e a equação de Patton & Goland.

2.3.1. MÉTODO DE VOGEL

A equação de Vogel ainda é uma das equações mais amplamente utilizadas na indústria. Vogel (1968) usou um programa de computador para gerar os IPRs para vários reservatórios de óleo saturados hipotéticos produzindo sob uma ampla gama de condições. Ao aplicar seu método, os únicos dados necessários são: a pressão média do reservatório P_r ou também conhecida como pressão estática P_e , a pressão do ponto de bolha P_b e a taxa de fluxo e pressão do poço estabilizado (Q_o e P_{wf}).

Vogel descobriu que todos os IPR calculados exibiram um mesmo perfil genérico. Essa curva é melhor aproximada através da Equação 2.6. (TAKACS, 2005). É importante lembrar que a equação de Vogel foi desenvolvida para ser utilizada com pressões manométricas e sua metodologia de pode ser usada para prever a curva IPR para dois tipos de reservatórios, os saturados e os subsaturados.

$$Q_o = Q_{omax} \left[1 - 0.2 \left(\frac{P_{wf}}{P_e} \right) - 0.8 \left(\frac{P_{wf}}{P_e} \right)^2 \right]$$
 Equação 2.6

ou, isolando Pwf, pode-se encontrar a equação 2.7

$$P_{wf} = 0.125 P_e \left[\sqrt{81 - 80 \left(\frac{Q_o}{Q_{omax}} \right) - 1} \right]$$
 Equação 2.7

Onde:

Qo = vazão de produção referente a pressão de fundo (Pwf), STB/d

Q_{omax} = máxima vazão de produção, STB/d

P_e = Pressão estática do reservatório, psi

Pwf = Pressão de fluxo de fundo, psi

Apesar do método de Vogel ter sido originalmente desenvolvido para reservatórios com mecanismo de gás em solução, o uso de sua Equação é geralmente aceitável para qualquer outro mecanismo. Foi descoberto que essa aproximação gera bons resultados para quase todos os poços com pressão de fundo abaixo da pressão de bolha. (PATTON e GOLLAND, 1980).

Para os casos onde o reservatório encontra-se acima da pressão de bolha, a primeira maneira para realizar os cálculos é usar a taxa de vazão e a pressão do poço estabilizado (Q_o e P_{wf}) para calcular $Q_{omáx}$ como a seguir: Equação 2.8

$$Q_{omax} = \frac{Q_o}{\left[1 - 0.2 \left(\frac{P_{wf}}{P_e}\right) - 0.8 \left(\frac{P_{wf}}{P_e}\right)^2\right]}$$

Em seguida, construa a curva IPR assumindo vários valores para $P_{\rm wf}$ abaixo de $P_{\rm e}$, calculando o $Q_{\rm o}$ correspondente da seguinte forma:

$$Q_o = Q_{omax} \left[1 - 0.2 \left(\frac{P_{wf}}{P_e} \right) - 0.8 \left(\frac{P_{wf}}{P_e} \right)^2 \right]$$

A segunda maneira consiste em calcular um índice de produtividade (J^*) através da equação 2.5 para em seguida encontrar um Q_{omax} , através da equação 2.9 e assim poder utilizar a equação acima.

$$Q_{omax} = \frac{J^* P_e}{1.8}$$
 Equação 2.9

Para obtenção da curva IPR para reservatórios saturados ($P_e \le P_b$) deve-se utilizar a equação 2.10 para casos onde o reservatório se encontra acima da pressão de bolha,

porém a pressão de fundo está abaixo, está equação é uma variação do Método de Vogel combinada com a Equação do IPR Linear.

$$Q_o = q_b + q_v \left[1 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]$$

$$q_b = IP. \left(P_e - P_{wf} \right)$$

$$q_v = \frac{IP. P_b}{1.8}$$

Onde:

q_b = vazão de produção na pressão do ponto de bolha, STB/d.

P_b = pressão de bolha, psi.

IP = índice de produtividade $\left(\frac{STB}{d.psi}\right)$ que pode ser calculado através da Equação 2.5 para reservatórios em regime peseudopermanente.

Pwf = pressão de fluxo de fundo, psi

Substituindo (2.11) e (2.12) em (2.10):

$$Q_o = IP. (P_e - P_{wf}) + \frac{IP. P_b}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]$$
 Equação 2.13

A Figura 4 ajuda a entender a formulação.

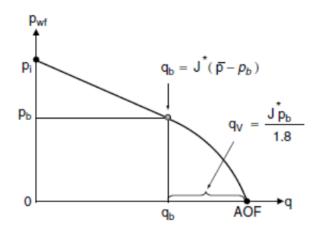


Figura 4 - Curva oriunda da união do IPR Linear com o Método de Vogel - Fonte: GUO, LYONS e GHALAMBOR, 2007

Para casos onde valores de testes (Q_o e P_{wf}) são utilizados para a construção do IPR, pode-se utilizar as Equações 2.14 e 2.15 para o cálculo do IP. Sendo a primeira utilizada para as ocasiões onde a pressão de fundo durante o teste foi maior que a pressão de bolha e a última quando a pressão for menor.

$$J = \begin{cases} \frac{Q_b}{\left(P_e - P_{wf}\right)} & P_{wf} \ge P_b \\ \\ \frac{Q_o}{\left(P_e - P_{wf}\right) + \frac{P_b}{1.8} \left[1 - 0.2\left(\frac{P_{wf}}{P_b}\right) - 0.8\left(\frac{P_{wf}}{P_b}\right)^2\right]} & P_{wf} < P_b \end{cases}$$

Calcule a taxa de fluxo de óleo na pressão do ponto de bolha:

$$Q_{ob} = J(P_e - P_b)$$
 Equação 2.16

Construa a curva IPR assumindo vários valores de $P_{\rm wf}$ e calculando o $Q_{\rm o}$ correspondente da seguinte forma:

espondente da seguinte forma:
$$P_{wf} \geq P_b$$

$$Q_o = \left\{ Q_{ob} + \frac{JP_b}{1,8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right] \right.$$
 Equação 2.18
$$P_{wf} < P_b$$

2.3.2. MÉTODO DE WIGGINS

Em 1996, Wiggins obteve uma equação para a previsão do desempenho do poço de petróleo. Sua equação pode ser usada da seguinte maneira:

Para os casos onde o reservatório é saturado, use a taxa de vazão e a pressão do poço estabilizado (Q_0 e P_{wf}) para calcular Q_{omax} como mostrado a seguir: Equação 2.19

$$Q_{omax} = \frac{Q_o}{\left[1 - 0.0933 \left(\frac{P_{wf}}{P_e}\right) - 1.6183 \left(\frac{P_{wf}}{P_e}\right)^2 + 1.5579 \left(\frac{P_{wf}}{P_e}\right)^3 + 0.8464 \left(\frac{P_{wf}}{P_e}\right)^4\right]}$$

A curva IPR deve ser construída assumindo vários valores de $P_{\rm wf}$ e calculando o $Q_{\rm o}$ correspondente da seguinte forma:

$$Q_o = Q_{omax} \left[1 - 0.0933 \left(\frac{P_{wf}}{P_e} \right) - 1.6183 \left(\frac{P_{wf}}{P_e} \right)^2 + 1.5579 \left(\frac{P_{wf}}{P_e} \right)^3 + 0.8464 \left(\frac{P_{wf}}{P_e} \right)^4 \right]$$

Equação 2.20

Quando o reservatório foi sub-saturado, deve-se usar a taxa de vazão e a pressão do poço estabilizado (Q_o e P_{wf}) para calcular o índice de produtividade (J) como a seguir:

$$J = \left\{ \begin{array}{c} \frac{Q_b}{\left(P_e - P_{wf}\right)} & \text{Equação } 2.21 & P_{wf} \ge P_b \\ \\ \frac{Q_o}{\left(P_e - P_b\right) + \frac{P_b}{1.8} \left[1 - 0.0933 \left(\frac{P_{wf}}{P_e}\right) - 1.6183 \left(\frac{P_{wf}}{P_e}\right)^2 + 1.5579 \left(\frac{P_{wf}}{P_e}\right)^3 + 0.8464 \left(\frac{P_{wf}}{P_e}\right)^4 \right] & P_{wf} < P_b \end{array} \right\}$$

Calcule a taxa de fluxo de óleo na pressão do ponto de bolha:

$$Q_{ob} = J(P_e - P_b)$$

Construa a curva IPR assumindo vários valores de $P_{\rm wf}$ e calculando o Q_o correspondente da seguinte forma:

$$Q_{o} = \begin{cases} J(P_{e} - P_{wf}) & \text{Equação } 2.23 & P_{wf} \ge P_{b} \\ & \text{Equação } 2.24 \\ Q_{ob} + \frac{JP_{b}}{1.8} \left[1 - 0.0933 \left(\frac{P_{wf}}{P_{e}} \right) - 1.6183 \left(\frac{P_{wf}}{P_{e}} \right)^{2} + 1.5579 \left(\frac{P_{wf}}{P_{e}} \right)^{3} + 0.8464 \left(\frac{P_{wf}}{P_{e}} \right)^{4} \right] & P_{wf} < P_{b} \end{cases}$$

2.3.3. MÉTODO DE KLINS-CLARK

Klins e Clark (1993) propuseram uma expressão de influxo similar em forma à de Vogel e pode ser usada para estimar dados futuros de IPR. Este método é considerado para os dois tipos de reservatórios a seguir:

Para reservatórios saturados, deve-se utilizar se a taxa de vazão e a pressão do poço estabilizado (Q_o e P_{wf}) para calcular Q_{omax} como mostrado a seguir:

$$Q_{omax} = \frac{Q_o}{\left[1 - 0.295 \left(\frac{P_{wf}}{P_e}\right) - 0.705 \left(\frac{P_{wf}}{P_e}\right)^d\right]}$$
 Equação 2.25

Onde:

$$d = \left[0.28 + 0.72 \left(\frac{P_e}{P_b}\right) (1.24 + 0.001 P_b)\right]$$
 Equação 2.26

Em seguida a curva IPR deve ser construída assumindo-se vários valores de $P_{\rm wf}$ e calculando o $Q_{\rm o}$ correspondente da seguinte forma:

$$Q_o = Q_{omax} \left[1 - 0.295 \left(\frac{P_{wf}}{P_e} \right) - 0.705 \left(\frac{P_{wf}}{P_e} \right)^d \right]$$
 Equação 2.27

Quando o reservatório for subsaturado, a taxa de vazão e a pressão do poço estabilizado $(Q_o \ e \ P_{wf})$ devem ser usadas para calcular o índice de produtividade (J) como a seguir:

$$J = \left\{ \begin{aligned} \frac{Q_b}{\left(P_e - P_{wf}\right)} & \text{Equação 2.28} \\ \\ \frac{Q_o}{\left(P_e - P_{wf}\right) + \frac{P_b}{1,8} \left[1 - 0.295 \left(\frac{P_{wf}}{P_b}\right) - 0.705 \left(\frac{P_{wf}}{P_b}\right)^a\right]} & P_{wf} < P_b \end{aligned} \right\}$$

Calcule a taxa de fluxo de óleo na pressão do ponto de bolha:

$$Q_{ob} = J(P_e - P_b)$$

Construa a curva IPR assumindo vários valores de $P_{\rm wf}$ e calculando o Q_o correspondente da seguinte forma:

$$Q_o = \left\{ \begin{aligned} J(P_e - P_{wf}) & \text{Equação 2.30} & P_{wf} \geq P_b \\ Q_{ob} + \frac{JP_b}{1,8} \left[1 - 0.295 \left(\frac{P_{wf}}{P_b} \right) - 0.705 \left(\frac{P_{wf}}{P_b} \right)^d \right] & \text{Equação 2.31} \end{aligned} \right.$$

2.3.4. MÉTODO DE PATTON & GOLAND

Patton & Goland propuseram uma expressão de influxo similar em forma à de Vogel e pode ser usada para estimar dados futuros de IPR. Este método é considerado apenas para reservatórios saturados, onde P_e é maior que P_b.

Deve-se utilizar a taxa de vazão e a pressão do poço estabilizado (Q_o e P_{wf}) para calcular o índice de produtividade (J) para quando a pressão de teste (P_{wf}) for maior que a pressão de bolha (P_b):

$$J = \frac{Q_b}{\left(P_e - P_{wf}\right)}$$
 Equação 2.32

Calcule-se a taxa de fluxo de óleo na pressão do ponto de bolha:

$$Q_{ob} = J(P_e - P_b)$$
 Equação 2.33

Depois q_c através da equação a seguir:

$$q_c = \frac{q_{sat}.P_b}{1.8(P_e - P_b)}$$
 Equação 2.34

Então pode-se calcular Qomax:

$$Q_{omax} = q_c + Q_{ob}$$
 Equação 2.35

E finalmente conseguimos encontrar Qo:

$$Q_o = q_c \left[1.8 \left(\frac{P_e}{P_b} \right) - 0.8 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]$$
 Equação 2.36

Quando a pressão de teste for menor ou igual a pressão de bolha, utiliza-se a taxa de vazão e a pressão do poço estabilizado $(Q_o \, e \, P_{wf})$ para calcular q_c :

$$q_c = \frac{Q_o}{\left[1.8\left(\frac{P_e}{P_b}\right) - 0.8 - 0.2\left(\frac{P_{wf}}{P_b}\right) - 0.8\left(\frac{P_{wf}}{P_b}\right)^2\right]}$$
 Equação 2.32

Calcule-se a taxa de fluxo de óleo na pressão do ponto de bolha:

$$Q_{ob} = \frac{Q_o(P_e - P_b)}{P_e - P_{wf}}$$
 Equação 2.33

Depois Q_{omax} através da equação a seguir:

$$Q_{omax} = q_c + Q_{ob}$$

E finalmente conseguimos encontrar Qo:

$$Q_o = q_c \left[1.8 \left(\frac{P_e}{P_b} \right) - 0.8 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]$$

2.3.5. MÉTODO DE STANDING

O método de Vogel inicialmente foi desenvolvido para ser utilizado em reservatórios sem efeito de película (s=0). Standing propôs um método para contabilizar os efeitos de mudanças de permeabilidade oriundos de uma estimulação ou dano no

reservatório. Pode ser aplica tanto para reservatórios saturados quando para subsaturados assim como o método original de Vogel.

Quando o reservatório for saturado, calcula-se a pressão de fluxo de fundo ideal (P_{wf}) , com a equação a seguir, utilizando a pressão de fluxo de fundo de teste (P_{teste}) :

$$P_{wf}' = P_e - FE. (P_e - P_{teste})$$
 Equação 2.34

Onde, o grau de alteração na permeabilidade pode ser expresso em termos de Razão de Produtividade (RP) ou Eficiência de Fluxo (FE) que é apresentada na Equação 2.35 para um reservatório em regime pseudo permanente. (BEGGS, 1991).

$$FE = \frac{LN\left(0,472\left(\frac{r_e}{r_w}\right)\right)}{LN\left(0,472\left(\frac{r_e}{r_w}\right) + S\right)}$$
 Equação 2.35

Onde:

r_e= raio de drenagem do reservatório, ft

r_w= raio do poço, ft

S = Fato película (skin)

$$\frac{Q_o}{Q_{omax}} = 1 - 0.2 \left(\frac{P_{wf}'}{P_e}\right) - 0.8 \left(\frac{P_{wf}'}{P_e}\right)^2$$
 Equação 2.36

Em seguida:

$$Q_{omax} = \left(\frac{Q_{teste}}{\frac{Q_o}{Q_{omax}}}\right) = \left(\frac{Q_{teste}}{1 - 0.2\left(\frac{P_{wf}'}{P_e}\right) - 0.8\left(\frac{P_{wf}'}{P_e}\right)^2}\right)$$
 Equação 2.37

E finalmente poderemos encontrar os valores para as taxas de vazão e traçar a curva IPR utilizando várias pressões de fluxo de fundo $P_{\rm wf}$:

$$Q_o = Q_{omax} \left(1 - 0.2 \left(1 - FE + FE \frac{P_{wf}}{P_e} \right) - 0.8 \left(1 - FE + FE \frac{P_{wf}}{P_e} \right)^2 \right)$$
 Equação 2.38

Onde:

P_{wf} = Pressões de fluxo de fundo para traçar IPR, psi.

Q_o = Vazões referentes as pressões de fluxo de fundo para traçar.

Q_{omax} = Vazão máxima calculada, bpd.

FE = Eficiência do fluxo.

P_e = Pressão estática do reservatório, psi.

Quando o reservatório de óleo é considerado subsaturado existem 2 casos para que seja calculado o índice de produtividade IP, um quando a pressão de fluxo de fundo do ponto de teste (P_{teste})é maior que Pb, e quando P_{teste} é menor ou igual a P_b.

CASO 1 (
$$P_{teste} > P_b$$
)
$$IP = \frac{Q_{teste}}{P_e - P_{teste}}$$
Equação 2.39
$$IP = \frac{Q_{teste}}{(P_e - P_b) + \left(\frac{P_b}{1.8}\right) \left(1.8 \left(1 - \frac{P_{wf}}{P_b}\right)\right) - 0.8FE \left(1 - \frac{P_{wf}}{P_b}\right)^2}$$
Equação 2.40

Construa a curva IPR assumindo vários valores de P_{wf} e calculando o Q_o correspondente, porém para construir a curva IPR também existem dois casos possíveis:

$$\begin{aligned} \textbf{CASO 1} & (\textbf{P}_{\text{wf}} \geq \textbf{P}_{\text{b}}) \\ Q_o &= IP(P_e - P_b) \end{aligned} \qquad \text{Equação 2.41} \\ \textbf{CASO 2} & (\textbf{P}_{\text{wf}} < \textbf{P}_{\text{b}}) \\ Q_o &= IP(P_e - P_b) + \left(\frac{IP.P_b}{1.8}\right) \left(1.8\left(1 - \frac{P_{wf}}{P_b}\right)\right) - 0.8FE\left(1 - \frac{P_{wf}}{P_b}\right)^2 \qquad \text{Equação 2.42} \end{aligned}$$

2.3.6. MÉTODO DE FETKOVICH

Fetkovich demonstrou que poços de óleo produzindo abaixo da pressão de bolha e poços de gás possuem curvas de performance similares. Portanto, as equações de performance para poços de gás podem ser aplicadas para poços de óleo, porém fetkovich só é válido para pressões de reservatório abaixo da pressão de bolha. (TAKACS, 2005).

O interessante deste método é que necessita de pelo menos 2 pontos de teste, não havendo um limite superior referente a quantidade de pontos, vale ressaltar que quanto mais pontos de teste mais precisa se torna a resposta deste método.

A equação principal foi dividida em diversas parcelas para facilitar os cálculos, e para realização de possíveis correções:

Equação 2.43

Equação 2.44

Equação 2.45

$$X = \sum (Q_{o})$$

$$Y = \sum (Q_{o}^{2})$$

$$Z = \sum (P_{e}^{2} - P_{wf}^{2})$$

$$W = \sum (Q_{o}(P_{e}^{2} - P_{wf}^{2}))$$

$$a = \left(\frac{i.W - X.Z}{i.Y - X^{2}}\right)$$

$$a = \left(\frac{i.\sum (Q_{o}(P_{e}^{2} - P_{wf}^{2})) - \sum (Q_{o}) \cdot \sum (P_{e}^{2} - P_{wf}^{2})}{i.\sum (Q_{o}^{2}) - \sum (Q_{o})^{2}}\right)$$

$$b = \left(\frac{Z.Y - X.W}{i.Y - X^{2}}\right)$$

$$b = \left(\frac{\sum (P_{e}^{2} - P_{wf}^{2}) \cdot \sum (Q_{o}^{2}) - \sum (Q_{o}) \cdot \sum (Q_{o}(P_{e}^{2} - P_{wf}^{2}))}{i.\sum (Q_{o}^{2}) - \sum (Q_{o})^{2}}\right)$$

$$AOF = P_{e}^{2} - \frac{a}{b}$$

$$AOF = P_{e}^{2} - \left(\frac{i.\sum (Q_{o}(P_{e}^{2} - P_{wf}^{2})) - \sum (Q_{o}) \cdot \sum (P_{e}^{2} - P_{wf}^{2})}{\sum (P_{e}^{2} - P_{wf}^{2}) \cdot \sum (Q_{o}^{2}) - \sum (Q_{o}) \cdot \sum (Q_{o}(P_{e}^{2} - P_{wf}^{2}))}\right)}$$

$$Equação 2.52$$

$$C = \frac{AOF}{(P_{e}^{2})^{n}}$$
Equação 2.54

E finalmente, podemos calcular a taxa de vazão para diversos valores de P_{wf} , e traçar a curva IPR, através da equação a seguir:

$$Q_o = C(P_e^2 - P_{wf}^2)^n$$
 Equação 2.55

Os resultados encontrados utilizando a Equação de Fetkovich são muito parecidos com os de Vogel. No entanto, segundo Economides & Saputelli (2005), a correlação de Fetkovich possui um melhor ajuste para os dados de campo. Porém, o Método de Vogel, pela praticidade, é mais útil por não necessitar de dados de campo prévios para ser aplicada.

2.4. DESEMPENHO DO RESERVATÓRIO

Com a curva IPR disponível, pode-se definir uma meta de produção. Para poços de alta vazão, pode definir-se o objetivo da produção através da capacidade ou limite de um determinado método de elevação artificial. Para poços de baixa vazão é desejável produzir a vazão máxima do poço.

2.5. DESCRIÇÃO DOS MÉTODOS DE ELEVAÇÃO

Os métodos de elevação que irão fazer parte do estudo decisório serão descritos nesse tópico, sendo eles: bombeio por cavidades progressivas (BCP), bombeio mecânico (BM), bombeio centrífugo submerso (BCS) e *gas lift*. Serão listados, para cada método, os principais equipamentos, o funcionamento, vantagens, desvantagens e as características operacionais.

2.5.1. BOMBEIO POR CAVIDADES PROGRESSIVAS

2.5.1.1. FUNCIONAMENTO

O bombeio por cavidades progressivas é uma bomba de deslocamento positivo que trabalha imersa em poço de petróleo (Thomas, 2001). Constituída de rotor helicoidal que gira no interior de um estator fixo, promovendo a elevação dos fluidos. Ao girar, origina-se um movimento axial das cavidades, progressivamente, no sentido da sucção para a descarga da bomba, promovendo a ação do bombeio. O acionamento da bomba é feito na superfície, por meio de uma coluna de hastes e um cabeçote de acionamento. O bombeio por cavidades progressivas está se tornando cada vez mais popular para a produção de fluidos viscosos, devido a simplicidade do método e de sua eficiência.

2.5.1.2. PRINCIPAIS EQUIPAMENTOS

Os equipamentos de superfície do BCP são: motor, cabeçote e quadro de comandos. Os motores usados em sistemas de bombeio por cavidades progressivas têm função de acionar a coluna de hastes do BCP, podendo ser motores de combustão interna ou elétricos com faixa de rotação entre 300 e 600 RPM.

O cabeçote ou cabeça de acionamento tem a finalidade de transmitir o movimento de rotação do motor para a coluna de hastes, sendo instalado entre esses dois componentes do sistema, além disso tem a função de reduzir a velocidade do motor para a velocidade de bombeio, vedar o espaço anular entre a coluna de hastes e a coluna de produção, não

permitindo o vazamento de fluidos para o meio ambiente. O quadro de comandos contém equipamentos de proteção para evitar danos ao sistema.

Já os equipamentos de subsuperfície do sistema BCP são: bomba de subsuperfície e uma coluna de hastes conforme a figura 5.

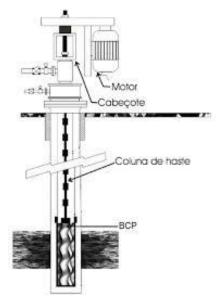


Figura 5 - Sistema de elevação por BCP e seus principais componentes (ASMANN, 2005).

A bomba de subsuperfície cujo rotor de aço com forma helicoidal dentro de um estator revestido de elastômero recebe o movimento da coluna de hastes e cria regiões de diferentes pressões no interior da bomba, desenvolvendo assim o bombeio do fluido (Almeida, 2010). As cavidades são geradas entre o estator e o rotor e se movem para cima conforme o rotor gira. A coluna de hastes do sistema de elevação por BCP é semelhante ao conjunto de hastes do bombeio mecânico, acionada por um motor elétrico ou de combustão interna localizado na superfície.

2.5.1.3. VANTAGENS E DESVANTAGENS

As principais vantagens do BCP são:

- Pode ser utilizado em poços com pequenas profundidades;
- Trabalha com bombas por cavidade progressiva imersas ao fluido em questão;
- Possui dois acionamentos: um na superfície e outro na subsuperfície;
- Possui um sistema de freio mecânico para travar o cabeçote caso haja uma parada no processo;

As principais desvantagens são:

• Possui uma limitação em relação a pressão que é formada na bomba por cavidade progressiva;

- Não pode trabalhar com poços direcionais;
- Não é apropriado para trabalhar em poços com alta produção de areia;
- Não trabalha com poços em altas temperaturas

2.5.1.4. CARACTERÍSTICAS OPERACIONAIS

O sistema de bombeio por cavidades progressivas é adequado para manuseio de sólidos e líquidos viscosos. Os compostos de borracha do estator estão sujeitos à expansão e endurecimento quando submetidos a altas temperaturas ou em presença de gases. Gás livre deve ser separado para aumentar a Eficiência, não há bloqueio de gás, mas a passagem de grandes quantidades de gás irá superaquecer a bomba e ocorrerão danos ao estator. A bomba tem uma única parte móvel no fundo do poço e não possui válvulas.

O sistema de BCP possui taxa de produção limitada a cerca de 4500 barris por dia em bombas de grande diâmetro, em bombas de pequeno diâmetro essa taxa pode ser muito mais baixa (HALLIBURTON, 2012).

As baixas velocidades de operação do BCP permitem que a bomba mantenha longos períodos de funcionamento caso não seja ou instalada em profundidades superiores a 4000 pés, submetida a ataques químicos e desgaste excessivo (LEA, 1999).

O sistema possui alta eficiência energética global, tipicamente variando de 50 a 70%. A profundidade do sistema é limitada pelo modo como a energia é transmita para a bomba e a própria limitação do diferencial de pressão sobre a mesma (CLEGG *et al.*,1993).

O superaquecimento e a queima da borracha do estator podem ocorrer devido à falta de fluido em quantidade suficiente para lubrificar e resfriar a bomba, por isso durante a vida produtiva do poço é necessário um acompanhamento do nível de fluido no anular (THOMAS, 2001).

2.5.2. BOMBEIO MECÂNICO

2.5.2.1. FUNCIONAMENTO

O bombeio mecânico é utilizado em poços rasos para elevar vazões médias e em poços profundos para elevar baixas vazões. Localizada na superfície, próxima à cabeça do poço, a unidade de bombeio transforma em movimento alternativo o movimento rotativo de um motor elétrico. O movimento alternativo do motor é transmitido para a

bomba de fundo através de uma coluna de hastes, a bomba de fundo tem a função de fornecer energia para o fluido, elevando- o a superfície.

2.5.2.2. PRINCIPAIS EQUIPAMENTOS

Na figura 6, pode-se observar os principais componentes do bombeio mecânico que são: coluna de hastes, bomba de fundo e unidade de bombeio, composta pelo pistão, válvulas de passeio e de pé.

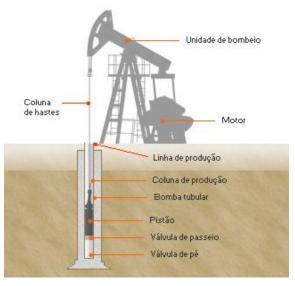


Figura 6 - Sistema completo de bombeio mecânico. Fonte: Adaptado de Thomas (2001)

A coluna de hastes conecta a unidade de bombeio à bomba de fundo. Sujeito a um nível elevado de corrosão, a coluna de hastes está submetida a um meio muito agressivo e de tensões elevadas, devendo suportar esforços de tração, cisalhamento e compressão, portanto para garantir a vida útil do equipamento, este sistema de elevação artificial deve ser o sistema mais resistente a corrosão quando comparado aos demais. A primeira haste do conjunto é chamada de haste polida e tem a finalidade de impedir o vazamento de fluidos.

A estrutura de uma unidade de bombeio é composta por: motor, balancim, biela e manivela, base, contrapesos, cabeça da UB, tripé e caixa de redução. A figura 7 ilustra uma unidade de bombeio típica. A unidade de bombeio é um equipamento de superfície que tem como função converter o movimento rotativo em movimento alternativo, que por meio de uma coluna de hastes de bombeio aciona a bomba de fundo.

Figura 7- Típica unidade de bombeio. Fonte: Thomas e outros autores, 2004.

Base

Serve como base onde se prendem, devidamente alinhados, o tripé, a caixa de redução e o motor. A base é moldada em concreto ou formada por perfis de aço.

Tripé

Formado por perfis de aço que devem possuir rigidez suficiente para suportar toda a carga da haste polida.

Viga Transversal ou Balancim

Viga de aço apoiada em seu centro por um mancal, o qual está preso no topo do tripé. A viga deve ter resistência suficiente para suportar de um lado a carga da haste polida e do outro a força transmitida pela biela.

Cabeça da UB

Localizada em uma das extremidades do balancim, suporta a carga da haste polida por meio de dois cabos de aço (cabresto) e uma barra carreadora. A geometria da cabeça da UB faz com que a haste polida se mova verticalmente no poço, reduzindo esforços e atrito no "T de surgência".

Biela e Manivela

Transmitem movimento ao balancim. A distância do eixo da manivela ao mancal da biela define o curso da haste polida. Este curso pode ser modificado alterando-se a posição onde a biela é presa à manivela.

Contrapesos

Quando o fluido é elevado o motor somente fornece energia no curso ascendente, no curso descendente a gravidade é responsável pelo movimento das hastes. Para elevar os fluidos o motor exige força cíclica o que causa a redução da sua vida útil. Na intenção de minimizar esse desgaste são utilizados contrapesos que são colocados na manivela ou na viga de unidade. Sendo assim no curso de ascendente os contrapesos descem o que diminui a potência requerida do motor, já no curso descendente o motor fornece energia e eleva os contrapesos. Sendo assim ocorre uma distribuição mais uniforme das cargas fazendo com que o motor seja exigido de forma mais contínua e aumentando sua vida útil.

Caixa de Redução

Transforma e energia de alta velocidade e baixo torque do motor em energia de alto torque e baixa velocidade. A velocidade de 600 ou 900 rpm do motor é reduzida para velocidades de 6 a 20 ciclos por minuto. A redução é feita através de polias e através de engrenagens. O custo do redutor é de aproximadamente 50% do valor total da unidade.

Motor

Os motores podem ser elétricos ou de combustão interna. Nos locais onde existe energia elétrica disponível são utilizados motores elétricos, pois apresentam maior eficiência, menor custo operacional e menor ruído. São ligados à rede elétrica por meio de um quadro de comandos, onde é feito o controle da unidade. Em locais isolados, onde a construção de uma rede para distribuição de energia elétrica não é viável economicamente, são utilizados motores de combustão interna.

A bomba de fundo usada no BM é do tipo alternativa, de simples efeito, seus componentes são basicamente: válvula, pistão, de passeio, válvula de pé e camisa representados na figura 8. Sua função é deslocar o fluido que se encontra em baixas pressões através da sucção, para a região de descarga de a alta pressão.

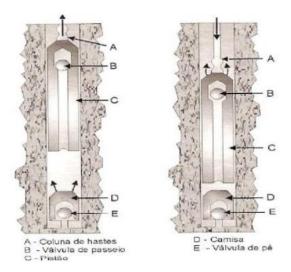


Figura 8 - Partes da bomba do método BM. Fonte: Thomas (2001)

O ciclo de bombeio é dividido em curso ascendente e descendente representados na Figura 9 e 10 respectivamente.

No curso ascendente, a válvula de passeio se mantém fechada, devido ao peso do fluido dentro da coluna de produção. A válvula de pé se abre devido a baixa pressão criada na camisa da bomba abaixo do pistão e acima da válvula, permitindo que o fluido que está no anular passem para o interior da bomba. Todo o fluido que está acima do pistão é elevado junto com as hastes. O fluido mais próximo da cabeça do poço entra na linha de produção, e nos ciclos seguintes é deslocado para o vaso separador.

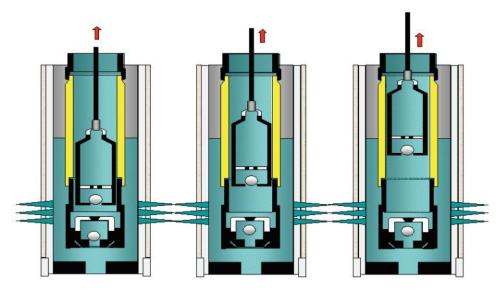


Figura 9 - Curso ascendente da unidade de bombeio. Fonte: Oliveira, 2010.

No curso descendente os fluidos que estão na camisa da bomba são comprimidos, fechando a válvula de pé. Como o pistão continua descendo, as pressões acima e abaixo da válvula de passeio se igualam e esta abre, permitindo a passagem de fluido para cima

do pistão. Ao atingir o final do curso descendente e iniciar o curso ascendente, a válvula de passeio fecha e a de pé abre, iniciando um novo ciclo.

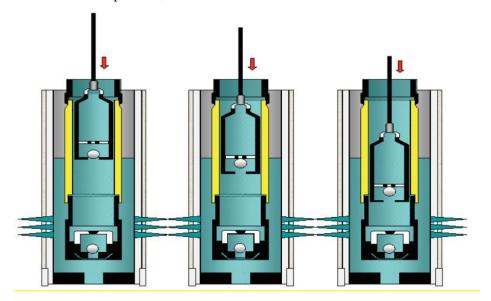


Figura 10 - Curso descendente da unidade de bombeio. Fonte: Oliveira, 2010.

2.5.2.3. VANTAGENS E DESVANTAGENS

As principais vantagens do BM são:

- Pode ser utilizado em poços terrestres;
- •Utilizados em poço com médias vazões ou baixas vazões e grandes profundidades;
 - Baixo custo operacional;
 - Pode trabalhar com fluidos de diferentes composições químicas.

As principais desvantagens do BM são:

- Não pode ser utilizado em poços direcionais;
- Sua utilização não é apropriada para poços com alto teor de areia;
- Utilização não apropriada para poços com alto teor de gás.

2.5.2.4. CARACTERÍSTICAS OPERACIONAIS

Segundo Thomas (2001), o método de elevação mais utilizado em todo o mundo é o bombeio mecânico, devido ao seu funcionamento relativamente simples de modo que operadores conseguem manuseá-lo com certa facilidade. Sua faixa de aplicação é bastante ampla, podendo ser aplicado em poços com múltiplas completações, e de pequeno

diâmetro, podendo realizar o bombeamento de um poço com uma pressão de fluxo de fundo muito baixa.

O sistema de BM pode elevar fluidos de alta viscosidade e opera a altas temperaturas, possui um sistema de ventilação natural para a separação de gás. O acionamento da unidade de bombeio pode ser realizado por motor elétrico ou de combustão interna. A utilização de sistemas de bombeio mecânico devem ser consideradas para a elevação em profundidade rasas de volumes moderados ou para profundidade elevadas e baixos volumes.

O uso do BM não é adequado para ambientes *offshore* nem para poços desviados, uma vez que ambientes *offshore* possuem limitação de peso e espaço em suas instalações e poços desviados existe a possibilidade da ocorrência de problemas relacionados ao atrito entre a haste e o tubo. A capacidade dos sistemas de hastes de bombeio de bombear areia é limitada, embora existam filtros e bombas especiais para tal aplicação. A eficiência de operação do sistema pode ser comprometida devido existência de parafina, onde esta pode ocasionar a obstrução do espaço anular entra a haste e o tubo.

Além disso, a eficiência volumétrica do sistema pode ser reduzida quando parte do gás produzido passa pela bomba, ocasionando uma redução do percentual de enchimento de líquido na camisa da bomba, podendo provocar um bloqueio por gás.

2.5.3. BOMBEIO CENTRÍFUGO SUBMERSO

2.5.3.1. FUNCIONAMENTO

Por serem capazes de elevar uma maior vazão de líquidos do que a maioria dos outros tipos de métodos de elevação artificial, as unidades BCS recebem um certo destaque em comparação às demais. Pode ser utilizada em ambientes *onshore* ou *offshore* e seu melhor desempenho é atingido quando usadas para elevar fluidos a altas vazões. Acredita-se que hoje cerca de 10% dos poços seja produzido através do bombeio centrífugo submerso (TAKÁCS, 2009).

A bomba centrífuga sob a forma de pressão transmite energia para o fluido, elevando-o para a superfície. Esta bomba de múltiplos estágios é acionada por um motor elétrico de subsuperfície e a energia elétrica é transmitida ao motor por meio de cabos ligados à rede elétrica na superfície que passam através do espaço anular.

2.5.3.2. PRINCIPAIS EQUIPAMENTOS

A Figura 11 ilustra os principais equipamentos de um poço equipado por BCS.

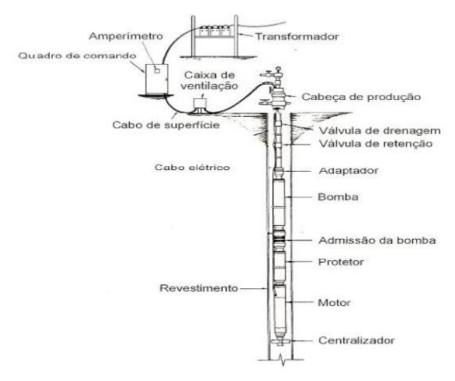


Figura 11 - Principais componentes do sistema BCS. Fonte: Thomas (2001)

Para cada poço produzindo por BCS existe na superfície uma fonte de energia (rede elétrica ou gerador), quadro de comando, transformadores, caixa de ventilação e variador de velocidade (*variable speed velocity* - VSD).

Quadro de Comando

Os equipamentos de fundo são operados e controlados com segurança através do quadro de comando.

Transformador

Como na maioria dos casos a voltagem dos equipamentos de superfície não é compatível com a voltagem do motor, é utilizado um transformador.

Caixa de ventilação

Os cabos de fundo e os cabos de superfície são unidos através da caixa de ventilação, que também tem a função de liberar para a atmosfera gases vindos do poço que tenham migrado pelo interior do cabo e permitir fácil acesso ao cabo elétrico para a medição de corrente.

Variador de velocidade

Serve para converter de uma frequência para outra, com o intuito de ajustar a velocidade de acionamento da bomba.

Os equipamentos de subsuperfície do sistema BCS são: admissão da bomba, bomba centrífuga, motor elétrico, cabo elétrico e selo do motor.

Admissão da bomba

A admissão da bomba permite o deslocamento do fluido para o primeiro estágio da bomba e a remoção de baixas quantidades de gás.

Bomba centrífuga

É responsável pela elevação dos fluidos.

Motor Elétrico

É um motor de indução, fornece energia para a rotação e aceleração dos fluidos no interior da bomba de modo que estes possam ser elevados e trabalha com corrente alternada.

Cabo elétrico

O motor é acionado através da energia transmitida por estes cabos trifásicos.

Selo do motor

O selo do motor previne a contaminação do motor por fluidos da formação através do isolamento e suporta as cargas da bomba e conecta o motor à bomba.

2.5.3.3. VANTAGENS E DESVANTAGENS

As principais vantagens do BM são:

- Trabalha com poços que produzam alto teor de água e baixa razão entre gás óleo (RGO);
- Tem flexibilidade quanto sua utilização em variados tipos de poço;
- Produz poços com fluidos viscosos e com alta temperatura.

As principais desvantagens do BM são:

- Não trabalha com poços que produzam areia;
- Não é apropriado para poços que produzam H₂S;
- Na retirada para manutenção da bomba é necessário bastante cuidado com o cabo elétrico;
- Há deposição de detritos na bomba.

2.5.3.4. CARACTERÍSTICAS OPERACIONAIS

O sistema BCS possui baixo ruído e os equipamentos de superfície ocupam espaço mínimo, por isso pode ser utilizado em locais urbanos, ambientes *offshore*, e ainda em poços desviados e horizontais sendo adaptável a desvios de até aproximadamente 80° (LEA, 1999).

O Bombeio centrífugo submerso trabalha com uma larga faixa de vazões. Não aplicável a vazões de produção menores que 200 barris por dia. A eficiência energética é de cerca de 50% para os sistemas de produção acima de 1000 barris por dia (TAKÁCS, 2009). Seu sistema elétrico é considerado seu ponto fraco, necessitando de uma fonte confiável de energia, porém se corretamente instalado e operado requer pouca manutenção. O sistema elétrico (cabo, motor e protetor) é limitado a temperaturas abaixo de 400° F (TAKÁCS, 2009). Acima deste limite, o rendimento dos componentes do BCS se deteriora rapidamente

Em função do cabo elétrico e potência do motor, os custos iniciais de instalação são relativamente elevados e estão diretamente relacionados à profundidade. O sistema não é aplicável para profundidades acima de 15000 pés (HALLIBURTON, 2012).

Embora os tratamentos de corrosão e incrustação sejam relativamente fáceis de executar, o BCS pode ter problemas com produção excessiva de areia, incrustações e parafinas. A produção de líquido pode ficar comprometida, sendo totalmente interrompida caso exista gás livre na entrada da bomba, diminuindo a eficiência da mesma. Seu limite para gás livre entrando na bomba é de 5%, sendo necessário o uso de separadores de gás ou manipuladores de gás (CLEGG et al., 1993).

O número de estágios e a potência necessária para acionar a bomba, depende diretamente da viscosidade do fluido a ser bombeado, se houver um aumento da viscosidade do fluido ocorrerá a redução da capacidade de elevação da bomba, o que leva a um aumento do número de estágios e da potência necessária para acionar a bomba.

2.5.4. GÁS LIFT CONTÍNUO

2.5.4.1. FUNCIONAMENTO

Muito semelhante ao fluxo natural, a grande maioria dos poços de gas lift é produzida por fluxo contínuo. Neste tipo de mecanismo, um gás comprimido de alta pressão serve como suplemento para o gás de formação, sendo adicionado a partir de uma fonte externa. Em uma profundidade máxima, que depende da pressão de injeção de gás e profundidade do poço, o gás comprimido é injetado continuamente para dentro da coluna de produção. Através da injeção de gás, o objetivo é diminuir a densidade do fluido produzido pelo poço, devido a mistura do gás, de menor densidade, com o fluido préexistente, como consequência o gradiente de pressão de fluxo da mistura desde o ponto de injeção de gás até a superfície é reduzido, deste modo reduzindo também a pressão de

fluxo no fundo do poço abaixo da pressão estática criando assim um diferencial de pressão que permite o fluxo do fluido para dentro do poço.

2.5.4.2. PRINCIPAIS EQUIPAMENTOS

Os sistemas de produção por gas lift contínuo são compostos basicamente das válvulas de gas lift instaladas na coluna de produção, dos compressores, separadores e equipamentos de armazenamento dos fluidos produzidos.

As válvulas de gas lift são válvulas de pressão ou de orifício alojadas em tubos denominados mandris. Uma válvula de gas lift é projetada para permanecer fechada até certas condições de pressão no anular e no tubo. Quando a válvula abre, permite passar por ela gás ou fluido do anular para a coluna de produção. O sistema de elevação por gas lift é ilustrado na figura 12.

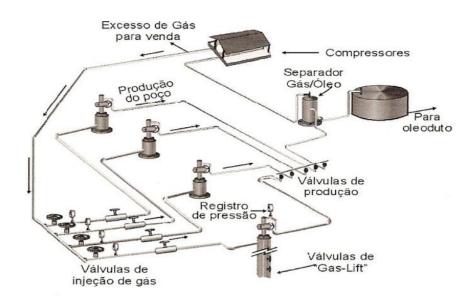


Figura 12 - Sistema de gás lift. Fonte: Thomas (2001)

2.5.4.3. VANTAGENS E DESVANTAGENS

As principais vantagens do Gás-lift são:

- Podendo ser utilizado em áreas de produção onshore e offshore;
- Utilizado para grandes teores de areia e razão gás líquido (RGL);
- Baixo custo operacional;
- Pode ser utilizado em poços direcionais;
- Método mais utilizado na indústria petrolífera

Suas principais desvantagens do Gas-lift são:

- Só irá funcionar com a injeção de gás comprimido;
- O gás a ser trabalhado não poderá ser corrosivo;
- Não pode trabalhar com grande distância entre o poço e os compressores que irão fornecer gás comprimido.

2.5.4.4. CARACTRÍSTICAS OPERACIONAIS

Podendo produzir sob uma vasta gama de volumes e profundidades, o gas lift contínuo é considerado um método versátil, sua produção pode chegar até um limite superior de 30000 barris por dia em várias profundidades (HALLIBURTON, 2012). Sendo uma excelente escolha para reservatórios com alta razão gás-óleo (RGO) e bons índices de produtividade (IP). Diferentemente da maioria dos outros métodos, altos valores de RGO são úteis ao invés de ser um obstáculo, assim menos gás de injeção é requerido.

A maior dificuldade deste método é elevar fluidos com alta viscosidade, devido a maior perda de carga por atrito. Torna-se um método menos eficiente quando utilizado para baixos volumes de produção de fluidos (menor que 200 barris por dia em tubos de 2-3/8 in) em conjunto com altos cortes de água, (LEA, 1999).

Já para a manipulação de areia ou materiais sólidos, a elevação por gas lift contínuo é considerado o melhor método de elevação artificial. Fluidos com material abrasivo sendo produzidos não afetam os equipamentos de gas lift na maioria das instalações. O gas lift é adequado para a produção de poços desviados.

Um sistema de gas lift central pode ser facilmente utilizado para operar diversos poços ou um campo inteiro. A centralização geralmente reduz o custo total de capital e permite fácil controle do poço e testes.

2.6. SELEÇÃO DO MÉTODO DE OPERAÇÃO

A decisão de qual método de elevação artificial utilizar é de extrema importância para a rentabilidade de um poço ou campo. O custo operacional e a eficiência da produção podem dependem diretamente da seleção do método de elevação mais adequado, uma seleção indevida pode reduzir a produção e aumentar substancialmente o custo operacional. Desta maneira torna-se primordial o engenheiro responsável conhecer as capacidades operacionais dos principais métodos de elevação.

É necessária a escolha do método mais adequado para o volume de fluidos produzidos pelo reservatório. Podem surgir efeitos indesejáveis quando não se adequa a capacidade de produção do equipamento com a capacidade de produção do reservatório.

Os cenários de perfuração e completação tem um impacto importante na determinação não só do melhor método de elevação, mas também a capacidade de produção do poço.

Existem algumas questões geográficas e ambientais determinantes para tomada de decisões em relação a escolha do melhor método de elevação artificial. Projetos em plataformas offshore por exemplo têm certa limitação em relação ao peso máximo dos equipamentos de elevação artificial que podem ser instalados, além de limitações relacionados ao espaço físico. Ambientes urbanos onshore por exemplo podem influenciar na seleção do método de elevação artificial, exigindo o mínimo de impacto visual e acústico. Locais remotos com disponibilidade mínima de infraestrutura também podem levar a escolha de determinados tipos de elevação artificial.

Entre os fatores mais importantes a serem considerados nas características do poço e do reservatório para a escolha do método de elevação mais adequado estão a pressão do reservatório e o índice de produtividade (IP). Alguns tipos de elevação artificial são capazes de reduzir a pressão de fundo de poço para um nível mais baixo do que os outros, como resultado ocorre o aumento da vazão de produção.

Devem ser consideradas também as características dos fluidos contidos no reservatório. A parafina é um grande problema para determinados tipos de elevação artificial. Gás livre na entrada da bomba é benéfico para o método de elevação por gás lift, que simplesmente acrescenta a energia desse gás com a energia já contida na injeção do gás comprimido, mas é um problema significativo para todos os demais métodos de elevação por bombeio. A produção de resíduos sólidos advindos da formação, assim como a produção de areia, pode ser muito prejudicial para alguns métodos de elevação como por exemplo o BM. Um dos fatores mais importantes para a escolha do método relacionados as características dos fluidos é a razão gás-óleo (RGO) de produção.

Neely (1981), para solucionar o problema da seleção do método de elevação artificial e dimensionamento, apontou duas abordagens que são frequentemente usadas. Uma abordagem considera a previsão de desempenho do reservatório a longo prazo, onde equipamentos de elevação artificial são instalados para poder lidar com a produção do poço ao longo de toda sua vida produtiva. Isso frequentemente leva à instalação de equipamentos de grandes dimensões e ocorre a antecipação da produção de grandes

quantidades de água. O outro extremo é a projeção a curto prazo que pode conduzir a muitas alterações nos tipos de equipamentos instalados durante a vida produtiva do poço.

Historicamente, os critérios usados para selecionar o método de elevação para um poço específico têm variado amplamente em toda a indústria. O ideal é considerar todos esses critérios quando se seleciona um método de elevação artificial.

Outro critério de seleção é a investigação da gama de profundidade e vazão onde determinados tipos de elevação artificial podem funcionar, para se obter a vazão final de produção desejada.

A avaliação dos custos inicias e custos operacionais pode ser outra alternativa para selecionar o método de elevação mais adequado. Nesta, o custo de capital para cada método de elevação deve ser avaliado, incluindo não só custos com equipamentos, como também as instalações de produção necessárias para suportar o método, e os custos operacionais, devem incluir o custo da energia necessária para operar determinado método e o custo de reparo de falhas de sistema de elevação.

A chegada de programas especialistas que são capazes de selecionar métodos de elevação artificial para determinado poço são um grande avanço para esta problemática, pois não estão limitados somente em comparar as vantagens e desvantagens dos métodos, indo muito além desta simples comparação, estes programas incluem regras e lógicas para realizar tal escolha, em função de entradas de dados que devem ser inseridas pelo usuário, como informações do poço e condições de funcionamento. Em seu sentido mais geral um sistema especialista é um programa de computador que ajuda os usuários a resolver problemas, fornecendo conselhos especialistas.

2.7. LÓGICA FUZZY

Implementou-se a lógica *fuzzy* devido à necessidade de um método capaz de manusear sistematicamente informações ou quantidades imprecisas, mal definidas e escassas, esta lógica é capas de modelar o senso de palavras, o senso comum e a tomada de decisões do ser humano. A lógica *fuzzy* tem se mostrado um importante meio de tomada de decisões, onde as variáveis não são definidas em termos exatos, sendo um método capaz de traduzir expressões imprecisas ou qualitativas em valores numéricos. Desta forma, é possível incluir a experiência humana em sistemas que possibilitam a tomada de decisão em problemas complexo, por isso tem sido um dos métodos vastamente utilizados em inteligência artificial.

A teoria presente na lógica *fuzzy* é intitulada como inteligente devido ao fato de emularem a inteligência humana. No enfoque desta lógica, ao invés de especificar um valor de um ponto na função, esta função é representada por seções que cobrem diferentes regiões, em outras palavras seria indicado um conjunto de valores admissíveis.

Diferentemente da lógica convencional ou *boolena* que é bivalente, ou seja, permite apenas dois valores possíveis, o valor verdadeiro e o falso, a lógica *fuzzy* é multivalente, permitindo infinitos valores, certificando que a "verdade" ou a "falsidade" pode ser vista de forma gradual, definindo o grau de veracidade em um intervalo numérico que varia de 0 a 1, onde a certeza absoluta é representada pelo valor 1 e a incerteza absoluta pelo valor 0, basicamente o que se obtém é um interpolação dos valores existentes entre 0 e 1 para o parâmetro desejado.

As funções de pertinência *fuzzy* são funções numéricas ou tabuladas que atribuem valores de pertinência *fuzzy* para valores de uma variável em seu universo de discurso que representa o intervalo numérico de todos os valores possíveis que uma variável pode assumir para um determinado caso a ser avaliado.

A figura 13 ilustra exemplos de funções de pertinência em que o eixo horizontal mostra o universo de discurso e o eixo vertical representa o intervalo [0,1], a quantidade de funções em um universo de discurso bem como o seu formato é ditado por informações de especialistas, natureza do processo, entre outros.

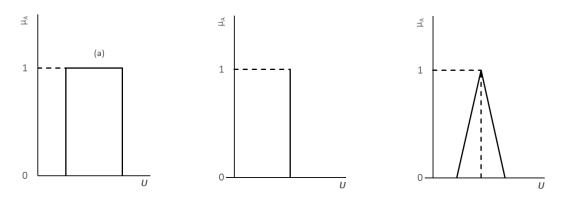


Figura 13 - Exemplos de funções de pertinência. Fonte: Elaborada pelo autor.

3. METODOLOGIA E DESENVOLVIMENTO DA FERRAMENTA PARA DETERMINAÇÃO DE SURGÊNCIA DO POÇO E ESCOLHA DO MELHOR MÉTODO DE ELEVAÇÃO

Primeiramente o trabalho foi dividido em duas metodologias referente aos cálculos para encontrar se o poço encontra-se em condições de surgência ou não surgência, em caso de surgência a ferramenta deve mostrar ao usuário qual é este ponto, chamado de ponto de equilíbrio, onde a coordenada "x" representa a vazão de equilíbrio e a coordenada "y" a pressão de equilíbrio. Vale ressaltar que para as duas metodologias os pontos referentes a curva TPR devem ser inseridos como dados de entrada, tomando a mesma abordagem referente aos cálculos reproduzidos manualmente, visto que devido à complexidade destes cálculos, naturalmente o discente os recebe como parâmetros de entrada do problema a ser solucionado.

A primeira metodologia considera que dados de teste de produção são previamente conhecidos, neste caso, a pressão de bolha (P_b) , pressão de teste (P_{wf}) , vazão de teste (Q_o) e a pressão estática (P_e) , também chamada de pressão do reservatório (P_r) , devem ser inseridas como dado de entrada. Somente para os casos monofásicos de abordagens lineares foram considerados os parâmetros referentes ao modelo de Darcy.

Na segunda metodologia considera-se que são conhecidos somente dados referentes a formação e as propriedades dos fluidos, neste caso, a pressão estática, pressão de cabeça (P_{wh}) e pressão antes do choque (P_{dc}), são alguns dos parâmetros incluídos aos dados de entrada, já a pressão de bolha, pressão de fluxo de fundo e vazão referente a esta pressão no fundo do poço, são previstos pela ferramenta através de uma série de cálculos e condicionamentos, para que finalmente o modelo mais adequado para a curva IPR seja automaticamente selecionado pela ferramenta, e fornecido ao usuário.

Seguindo um mesmo padrão de funcionamento para as duas metodologias, foram criadas planilhas para inserção dos dados de entrada, planilhas de cálculos ocultadas, e planilhas de resposta, onde são fornecidos os resultados obtidos através da ferramenta. Em seguida foram desenvolvidas algumas funções no VBA para automatizar partes da ferramenta e proporcionar a menor interferência possível do usuário, estas funções serão mostradas no tópico 3.3. Além das funções também foram inseridos botões para tornar a ferramenta mais dinâmica e com uma interface agradável e simplificada.

Em seguida foi desenvolvida uma metodologia referente a escolha do melhor método de elevação para os casos em que seja detectado a condição de não surgência do poço. Esta metodologia foi aplicada para toda a ferramenta e será abordada a seção 3.4. Os dados de entrada para esta metodologia foram unificados aos dados de entrada para cada modelo de cálculo da IPR.

3.1. METODO I – PONTOS DE TESTE COMO DADOS DE ENTRADA

Ao selecionar na planilha principal o Método I (ver Figura 14), que consiste em destrinchar toda a rotina de cálculos, de maneira que o usuário possa analisar separadamente os resultados encontrados, o usuário deverá escolher o tipo de escoamento que deseja obter a curva IPR, se monofásico ou multifásico, como observa-se através da imagem da interface da ferramenta na Figura 15. Em seguida o usuário deverá inserir os pontos referentes a curva TPR e selecionar o número de pontos que deseja inserir, nesta etapa deve-se atentar para as informações inseridas, caso os dados sejam inconsistentes ocasionarão possíveis erros e imprecisão nos cálculos (Figura 16).

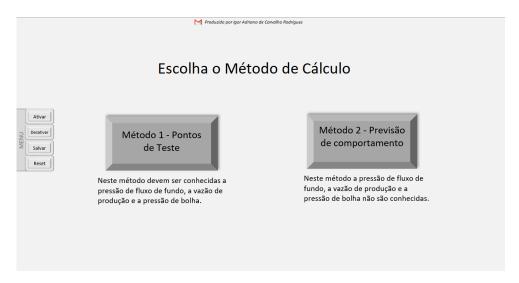


Figura 14 - Escolha do Método na interface da ferramenta proposta.

3.1.1. FLUIDOS MONOFÁSICOS

A depender da escolha do usuário, caso opte pelo escoamento monofásico foram implementadas três variações do modelo de Darcy para o cálculo das curvas IPR, baseados no tipo de regime, que são: regime transiente, regime estacionário e pseudo-estacionário (Figura 17).

Figura 15 - Escolha do tipo de Escoamento.

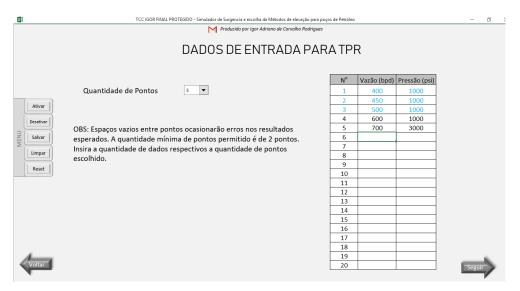


Figura 16 - Dados de entrada para a TPR

Figura 17 - Escolha do tipo de regime para fluxo monofásico.

No regime transiente são considerados nos cálculos a porosidade, o tempo de escoamento e a compressibilidade total do fluido, já o regime estacionário e pseudo-estacionário consideram a área de drenagem e o fator película.

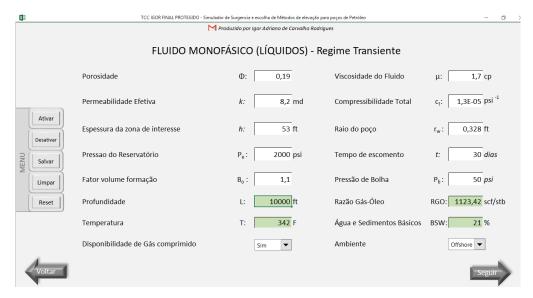


Figura 18 - Exemplo de dados de entrada para fluido monofásico, regime transiente.

Observa-se na imagem acima um exemplo para os dados de entrada do modelo monofásico em regime transiente, neste exemplo note que existem 4 espaços para inserção de dados com coloração do fundo esverdeado, esses dados são referentes a etapa de escolha do melhor método de elevação para este modelo, e existem outros 2 dados abaixo referente a disponibilidade de gás comprimido e o tipo de ambiente (Offshore ou Onshore), também referentes a esta mesma etapa.

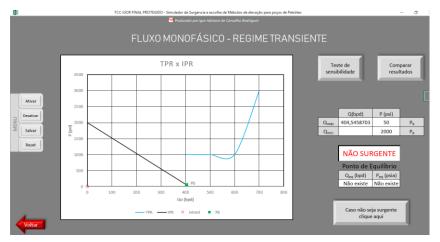


Figura 19 - Resposta do fluxo monofásico para regime transiente.

Em seguida basta clicar em seguir para obter a resposta se o poço é surgente ou não, e as curva IPR, TPR com o ponto de equilíbrio em caso de surgência (Figura 18).

Esta resposta só foi possível graças a planilha de cálculos, onde são consideradas todas as equações apresentadas no Capítulo 2.

Na Figura 19, observa-se que a resposta da ferramenta é de que o poço para as condições inseridas nos dados de entrada tanto da IPR quanto da TPR configura-se como não surgente, e o ponto de equilíbrio exibe a mensagem "Não existe" indicando que ponto de equilíbrio não foi encontrado pois as curvas referentes a IPR e TPR não se tocam.

Esta metodologia permite uma análise de sensibilidade pois diversas curvas podem ser adicionadas em um único estudo de caso variando os parâmetros à escolha do usuário. Bastando clicar no botão "Teste de sensibilidade" como visto na Figura 19. Durante o teste, além de observar o comportamento das curvas IPR, pode-se obter a condição de surgência ou não surgência para cada curva, e o respectivo ponto de equilíbrio nos casos surgentes (ver Figura 20).

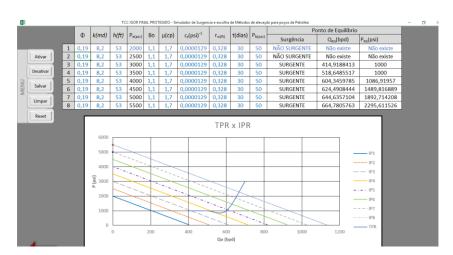


Figura 20 - Teste de sensibilidade modificando a pressão estática.

Ainda é possível fazer uma comparação entre os tipos de regimes, clicando em "Comparar Resultados" como visto na Figura 19. A Figura 21 mostra as curvas para os regimes transiente, estacionário e pseudo-estacionário sendo comparadas graficamente, para os mesmos parâmetros inseridos nos três regimes, logo abaixo pode-se verificar uma tabela contendo as condições de surgência.

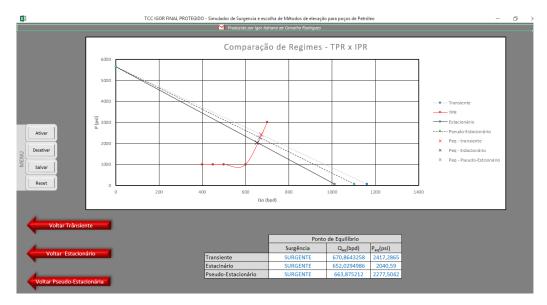


Figura 21 - Comparação entre os regimes monofásicos.

Quanto a etapa de seleção do método de elevação artificial mais adequado, será abordado na seção 3.4.

3.1.2. FLUIDOS MULTIFÁSICOS

Caso o usuário opte pelo escoamento multifásico foram implementados seis modelos para o cálculo das curvas IPR, são eles: Vogel, Fetkovich's, Standing, Patton & Goland, Wiggins e Klins-Clark, sendo que todos com exceção do modelo de Fetkovich's levam em consideração o modelo combinado (ver Figura 22). O modelo combinado considera a curva linear acima do ponto de bolha e abaixo dele segue-se com o modelo originalmente proposto.

Figura 22 - Escolha do modelo para fluxo multifásico.

Do mesmo modo que para o fluxo monofásico os dados de entrada para a curva IPR estavam integrados com os dados de entrada para a escolha do método de elevação

mais adequado, o fluxo multifásico segue o mesmo padrão, veja abaixo o exemplo para o modelo de Vogel na Figura 23.

Figura 23 - Exemplo dados de entrada para fluido multifásico, modelo de Vogel.

Porém diferentemente do fluido monofásico, para o fluido multifásico não é possível realizar o teste de sensibilidade, uma vez que os dados de entrada são muito simplificados e para realizar tal analise, basicamente a única opção, seria modificar a pressão estática do reservatório, a pressão de teste ou a vazão de teste, o que implicaria em modificar completamente as características do problema que se propunha analisar.

Depois de inseridos os dados de entrada, basta clicar em seguir e a guia de resultados aparecerá, do mesmo modo que para o fluido monofásico, porém apenas com a opção de "Comparar resultados" (Figura 24).

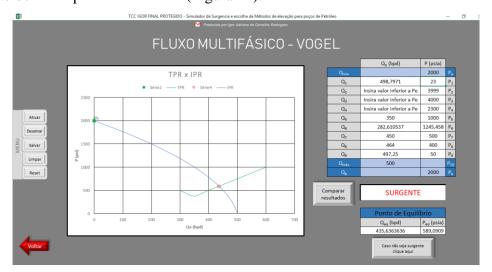


Figura 24 - Resposta do fluxo multifásico para modelo de Vogel.

Note que ao lado do gráfico existe a possibilidade de inserir valores desejados de pressões para adquirir as respectivas vazões de acordo com o modelo escolhido.

Clicando no botão "Comparar Resultados" é possível ter acesso a uma outra ferramenta muito interessante através do botão "Comparar com dados reais", este possibilita que sejam inseridos até 16 pontos de teste para dados reais de produção, onde a partir desses pontos é possível traçar uma curva para cada modelo que melhor se aproxime dos pontos reais ao longo de uma curva imaginária. Porém esta ferramenta será melhor comentada na seção de Validação da Ferramenta (seção 3.5).

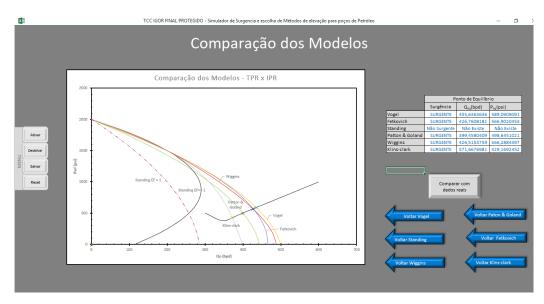


Figura 25 - Comparação entre os modelos multifásicos.

3.2. METODO II – PREVISÃO DO PONTO DE TESTE E COMPORTAMENTO DO MELHOR MODELO

Ao selecionar na planilha principal o Método II, que consiste em prever pontos de teste simulados, baseado em 2 rotinas de previsão, a primeira rotina, consiste em calcular uma pressão de fluxo de fundo e uma vazão para casos em que o escoamento seria monofásico e a segunda rotina calcula um $P_{\rm wf}$ e um $Q_{\rm o}$ para casos em que o escoamento seria multifásico.

Neste método o resultado é expresso de maneira gráfica na mesma guia em que os dados de entrada são inseridos, assim pode-se observar a variação do comportamento da curva assim que os dados são alterados. Existe também a possibilidade de selecionar as unidades de medida para os parâmetros de entrada.

Os parâmetros de entrada para este método são: o grau API do óleo, o diâmetro do choke (D_c) , o fator β que nada mais que a razão entre o diâmetro do choke e o diâmetro da tubulação (D_t) , pressão de cabeça (P_{wh}) , Pressão antes do choke (P_{dc}) , comprimento da tubulação (L), razão gás-líquido (RGL), pressão estática (P_e) , porcentagem de sedimentos básicos e água (BSW), densidade relativa do gás (γ_{rg}) , Hold-up (Λ_L) , massa específica do gás (p_g) , temperatura do reservatório (T), temperatura separador (T_u) , viscosidade média (μ_m) , permeabilidade efetiva (k) e a eficiência do poço (EF).

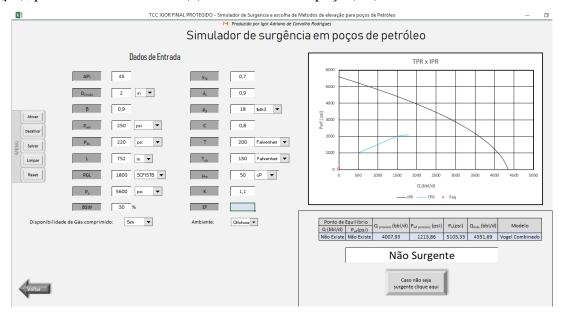


Figura 26 - Dados de entrada e resposta do Método II – previsão de comportamento.

Nas Figuras 27 e 28, mostra-se parte da planilha de cálculos referente a rotina de cálculos para previsão do fluxo monofásico, e para fluxo multifásico respectivamente, em seguida é realizada uma comparação para prever que tipo de fluxo está ocorrendo de fato. Se a pressão de fluxo de fundo para previsão multifásica (P_{wf2}) for maior que a pressão de bolha (P_b), o fluxo é monofásico e deve-se usar a pressão de fluxo de fundo para previsão monofásica (P_{wf1}) e sua respectiva vazão Q_{o1} , se P_{wf2} for menor que P_b , o fluxo é multifásico e deve-se usar P_{wf2} e sua respectiva vazão Q_{o2} .

P_{wf} final igual a pressão de fluxo de fundo para previsão monofásica (P_{wf1}) se:

$$P_{wf2} > P_b$$

P_{wf} final igual a pressão de fluxo de fundo para previsão multifásica (P_{wf2}) se:

$$P_{wf2} < P_b$$

Após encontrado o tipo de fluxo e o P_{wf} final e a Q_o final, é realizado uma outra comparação para definir o modelo de IPR que deve ser utilizado.

Para casos em que o Modelo é Linear:

$$P_e > P_{wf} > P_b$$

Para casos em que o Modelo é Vogel:

$$Hold-up = 0;$$

$$P_b >= P_e > P_{wf}$$
:

Para casos em que o Modelo é Combinado:

$$P_e > P_b > P_{wf}$$
;

Para casos em que o Modelo é Standing:

Deve-se inserir qualquer valor para Eficiência (EF), até mesmo zero.

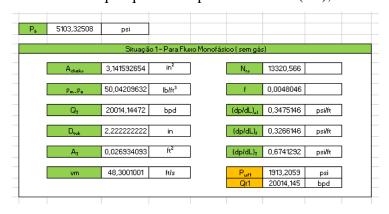


Figura 27 - Planilha de cálculos para previsão do ponto de teste para fluxo monofásico.

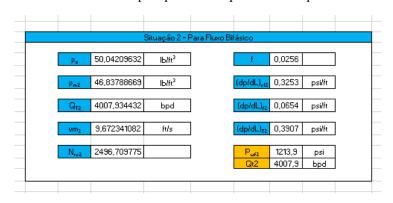


Figura 28 - lanilha de cálculos para previsão do ponto de teste para fluxo multifásico.

São calculados nesta planilha os pontos da IPR para o modelo Linear, Vogel, Combinado e Standing e com essas comparações, é possível selecionar os dados da planilha referente ao modelo correto que devem ser plotados para a curva IPR e traçar a condição de surgência para o método II.

3.3. BOTÕES E CÓDIGOS DE ROTINAS VBA

Esta seção tem por objetivo explanar sobre como foram criados e para que servem os botões, os códigos de rotina em VBA, e exemplificar partes da planilha de cálculo.

3.3.1. BOTÕES

Basicamente existem 6 botões criados através de códigos de rotina em VBA, são eles: os botões "Ativar", "Desativar", "Salvar", "Limpar", "Reset" e "Solver", os 5 primeiros fazem parte de um "menu" disponível em todas as planilhas, e o último está presente apenas em uma planilha que será comentada na Seção 3.5.1(ver Figura 29).

Figura 29 - Botões criados através de código VBA.

3.3.1.1. BOTÃO ATIVAR

O botão "Ativar" tem como função ativar o modo tela cheia, tirando o aspecto de planilha do excel, onde somem todas as barras e guias, seu código encontra-se no Apêndice A.

3.3.1.2. BOTÃO DESATIVAR

Já o botão "Desativar" tem exatamente a função oposta, mostrar novamente a planilha com todas as suas barras e guias. O código está disponível no Apêndice B.

3.3.1.3. BOTÃO SALVAR

O botão "Salvar", como o próprio nome sugere, tem a função de salvar as alterações feitas na ferramenta, serve principalmente para facilitar seu acesso, sem precisar desativar o modo tela cheia. O código está disponível no Apêndice C.

3.3.1.4. BOTÃO LIMPAR

Já o botão "Limpar", foram criadas inúmeras rotinas com base em cada planilha em que desejava-se limpar os dados de entrada, então devido a imensa quantidade de códigos, será exibido apenas um exemplo para a planilha de dados de entrada do modelo

de Vogel. Note no código disponível no Apêndice D que basicamente as únicas mudanças referentes aos demais códigos para limpar as demais planilhas, é o nome do código em verde, e a identificação das células da planilha dentro da função "Range".

O Código para o botão reset segue a mesma lógica, porém neste, todos os dados de entrada de todas as planilhas serão apagados.

3.3.1.5. BOTÃO SOLVER

E por fim temos o botão "Solver" que tem a função de ativar automaticamente a função "solver" do Excel para um determinado grupo de células que se deseja obter um resultado por método interativo. Em muitos casos o solver não é capas de chegar a um resultado satisfatório com apenas uma interação, então foram incorporados ao código 4 interações automáticas para que se obtenha uma resposta precisa. O código está disponível no Apêndice E.

Existem também mais 16 botões criados através de hiperlinks, apenas para conectar uma planilha a outra e tornar a ferramenta mais fluida e fácil de ser manuseada, são eles: "Método 1 – Pontos de Teste", "Método 2 – Previsão de comportamento", "Monofásico (líquido)", "Multifásico", "Transiente", "Estacionário", "Peseudo-Estacionário", "Vogel", "Fetkovich's", "Standing", "Patton & Goland", "Wiggins", "Klins-Clark", "Seguir", "Voltar", "Comparar resultados", "Teste de sensibilidade", "Comparar com dados reais" e "Caso não seja surgente clique aqui",

3.3.2. CÓDIGOS DE ROTINA VBA

Existem ainda outros códigos que fazem parte do corpo da ferramenta, onde não precisam ser incorporados à botões para terem sua funcionalidade, os 3 códigos mais utilizados foram para criar as funções: profbm, INTERPOLAR e intersectcomplex. Estes Códigos estão disponíveis nos Apêndices F, G e H respectivamente.

3.3.2.1. CÓDIGO PROFBM

A função "profbm" tem por objetivo relacionar a profundidade e a vazão de operação para o método de elevação artificial de bombeio mecânico.

3.3.2.2. CÓDIGO INTERPOLAR

A função "INTERPOLAR", é de grande importância para obtenção de valores intermediários a dados pontuais, este código foi muito utilizado na etapa de seleção do método de elevação artificial mais adequado, durante o condicionamento da lógica *fuzzy*. Veja um exemplo na Figura 30 abaixo:

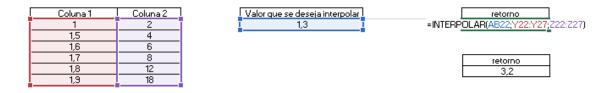


Figura 30 - Exemplo de utilização da função INTERPOLAR.

Por último e não menos importante, a função "intersectcomplex" foi a função mais utilizada ao longo de toda a ferramenta computacional proposta, a automatização da exibição do ponto de operação como resposta final só foi possível graças a esta função.

Além desta função, para obtenção dos resultados esperados foi necessário utilizar a função "SEERRO", que está disponível no próprio banco de dados do Excel.

Observe na Figura 31 que a primeira e segunda coluna referente a Interseção, existe o aparecimento de um erro "#N/D". Este erro surge para os intervalos em que não existe interseção entre as duas curvas, porém o erro "#N/D" como resposta da função "intersectcomplex" impossibilita que posteriormente essas células sejam utilizadas dentro de condicionamentos da função "SE", que será essencial para selecionar o ponto de equilíbrio referente a vazão (Q) e a pressão (Pwf). Para solucionar este problema, utilizouse a função "SEERRO", para retirar o erro e substitui-lo pelo número zero. Se a célula não mostrar o erro #N/D, significa que existe interseção para este intervalo, e o resultado será exibido no formato numérico, e a função "SEERRO" exibirá o próprio valor da célula.

Posteriormente na região da planilha referente ao ponto de equilíbrio de fato, são utilizadas uma série de condicionamentos com utilização da função "SE", onde se o valor da célula for igual a zero, passa para a próxima até encontrar um número diferente de zero, se encontra-lo, ele será exibido como resposta, se não, a mensagem "Não Existe" será exibida. Logo abaixo um outro condicionamento é feito para dizer se é surgente ou não, se o valor do ponto de equilíbrio for um valor numérico, então a resposta será "SURGENTE", se não for um valor numérico, a resposta será "Não surgente".

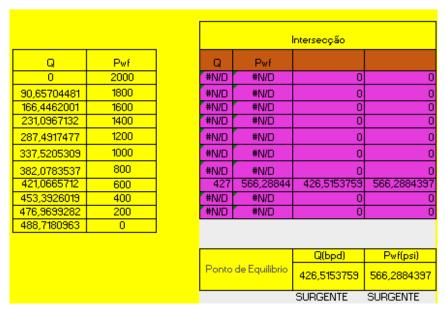


Figura 31 - Utilização das funções intersectcomplex e SEERRO.

3.3.2.3. CÓDIGO INTERSECTCOMPLEX

Para que fosse possível o funcionamento da função "intersectcomplex" houve a necessidade de criar seguimentos para os dados da TPR de entrada, onde o seguimento 1 por exemplo, é a seleção das 2 primeiras células que corresponderiam ao primeiros ponto para gerar um seguimento de reta (x,y), o seguimento 2 seria a seleção das 4 primeiras células correspondentes aos 2 primeiros pontos de uma reta, onde cada ponto deve ter uma coordenada x e uma coordenada y, e assim por diante (ver Figura 32).

Abaixo veja o exemplo de como deve ser usada a função:

= intersectcomplex (x1;y1;x2;y2;curva que deseja-se interpolar)

Na Figura 33 consta parte do código de utilização da função, note os seguimentos que foram citados anteriormente inseridos dentro de funções condicionais, essas condições dependem da seleção do número de pontos inseridos para os dados da TPR, ou seja, se o usuário disser que deseja inserir apenas 4 pontos, uma célula receberá o número 3 que será o condicionamento para usar o seguimento 4, que consequentemente conterá 8 células selecionadas, 4 referentes ao eixo "x" e 4 referentes ao eixo "y".

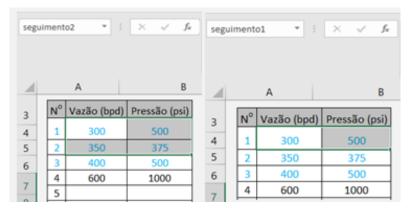


Figura 32 - Utilização dos seguimentos de uma curva para função intersectcomplex.

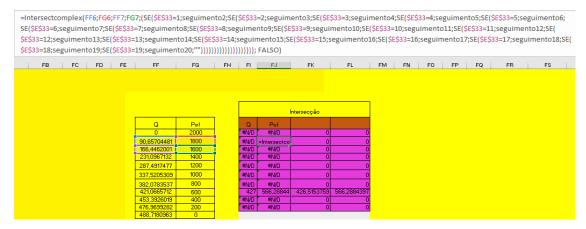
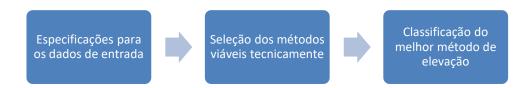


Figura 33 - Utilização da função SE para escolha do seguimento correto na função intersectcomplex.


3.4. ESCOLHA DO MÉTODO DE ELEVAÇÃO MAIS ADEQUADO

A escolha do método de elevação artificial mais adequado será feita através da avaliação da viabilidade técnica de cada método de elevação para determinadas condições de entrada, sendo desconsiderados os projetos detalhados das instalações e a análise econômica. Caracterizando-se como um sistema que incorpora o conhecimento obtido através da literatura em um banco de dados utilizado para determinar o método de elevação mais adequado às condições especificadas.

A ferramenta é composta por duas etapas. A primeira, baseada na lógica *booleana*, fará uma seleção de quais os métodos de elevação que poderão ser aplicados diante das condições de entrada, em outras palavras tem caráter eliminatório, a segunda etapa, irá ordenar os métodos que foram considerados aptos na primeira etapa indicando aquele com maior pontuação como sendo o que melhor atende o contexto de produção do poço, esta é baseada na lógica *fuzzy*, e tem caráter classificatório.

Para determinar se o método irá operar eficientemente para a aplicação desejada será empregada a viabilidade técnica da ferramenta, deste modo pode-se definir o quanto o método de elevação se ajusta as características de produção do poço em questão.

O fluxograma abaixo exibe as etapas da ferramenta de seleção do melhor método de elevação.

Como parâmetros de entrada para este trabalho foram considerados a profundidade, a vazão, temperatura, Razão gás-óleo (RGO), viscosidade, BSW, disponibilidade de gás comprimido e o tipo de ambiente, se onshore ou offshore.

Após as especificações dos parâmetros de entrada, a primeira etapa consiste em verificar quais métodos são aceitos para o tipo de ambiente selecionado, em seguida quais métodos são eliminados em caso de não disponibilidade de gás comprimido.

Na etapa seguinte o sistema irá apontar quais métodos de elevação são aplicáveis ao caso em questão, com base nos limites para as capacidades operacionais de cada método de elevação que estão dispostos na tabela 1. Nesta etapa os valores dos parâmetros de entradas serão comparados a valores limites da capacidade operacional de cada parâmetro para cada método de elevação, se um ou mais parâmetros de entrada não estiverem dentro dos limites da faixa de operação de determinado parâmetro o método de elevação não será aplicável às condições especificadas.

Parâmetro	вм	ВСР	BCS	Gas Lift
Profundidade Máxima (ft)	16000	6000	15000	15000
Vazão Máxima (bpd)	5000	4500	30000	30000
Temperatura (F)	500	250	400	400
RGO (scf/stb)	2000	2000	2000	5000
Viscosidade (cp)	500	5000	500	500
BSW (%)	100	100	100	80

Tabela 1 - Limites operacionais dos métodos de elevação artificial.

A média dos valores limites das capacidades operacionais de cada um dos métodos de elevação apresentados na tabela 1 foram obtidos em Halliburton (2012).

Os valores da profundidade e vazão para o método de elevação por bombeio mecânico não podem ser avaliados isoladamente como nos demais métodos, já que conforme aumenta-se a profundidade do sistema a vazão de produção diminui. A figura 34 apresenta a relação entre vazão e profundidade para o bombeio mecânico, a função que determina a profundidade máxima de aplicação do bombeio mecânico em relação a uma determinada vazão de entrada foi comentada na seção 3.3.2.1.

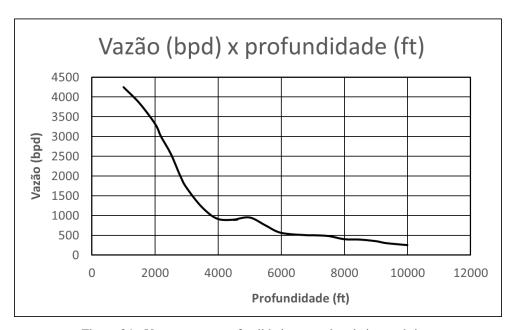


Figura 34 - Vazão versus profundidade para o bombeio mecânico.

Em seguida deve-se classificar através de pontuação os métodos considerados aplicáveis na primeira etapa. A classificação consiste em dividir em regiões de bom e mal funcionamento os intervalos de aplicação para cada método de elevação.

Cada parâmetro terá uma pontuação que varia de 0 a 1 que avalia o quanto o parâmetro de entrada se encaixa na faixa de bom funcionamento para cada método. Assim através da média aritmética da pontuação de cada um dos parâmetros correspondentes ao método obtém-se a pontuação final de cada método de elevação.

Cada um dos métodos de elevação possui parâmetros que não precisam ser obtidos através das funções de pertinência, devido a sua boa eficiência em todo o intervalo de operação, a tabela 2 mostra quais são esses parâmetros para cada um dos métodos, logo o valor de referência para contagem de pontos

sempre será o valor máximo correspondente ao número 1 para estes parâmetros.

BM	ВСР	BCS	Gas Lift
Temperatura	Viscosidade	Profundidade	Profundidade
BSW	BSW	BSW	

Tabela 2 - Parâmetros com boa eficiência em todo o intervalo de operação.

Os parâmetros que deverão ser classificados através da pontuação pelas funções de pertinência para cada método estão presentes na Tabela 3.

BM	ВСР	BCS	Gas Lift	
Profundidade	Profundidade	Vazão	Vazão	
Vazão	Vazão	Temperatura	Temperatura	
RGO	Temperatura	RGO	RGO	
Viscosidade	RGO	Viscosidade	Viscosidade	
			BSW	

Tabela 3 - Parâmetros classificados através das funções de pertinência.

Para cada um dos métodos de elevação foram encontradas funções de pertinência *fuzzy*, definindo os intervalos de bom e mau funcionamento para cada um dos parâmetros avaliados.

Para esta ferramenta foram consideradas apenas as curvas de bom funcionamento, mas nada impediria a utilização das curvas de mau funcionamento, o critério de seleção seria apenas o invertido, neste caso o método de elevação que obtivesse a menor pontuação seria a melhor escolha.

Para traçar as funções de pertinência de bom funcionamento bastam 4 dados para cada parâmetro, onde pontua-se com zero o intervalo de pior desempenho e com 1 o intervalo de maior desempenho, sem a necessidade dos valores intermediários, estes valores podem ser obtidos através da função INTERPOLAR apresentada na seção 3.3.2.2.

3.5. COMPARAÇÃO COM DADOS REAIS

Dentro da ferramenta existe um botão na área de resultados para os modelos multifásicos que possibilita ter acesso a uma guia onde pode-se comparar dados reais de teste de produção com as curvas previstas por cada modelo.

Inicialmente foram encontrados valores de teste de produção reais para serem inseridos como dados de entrada, é possível inserir 16 pontos de teste. Em seguida esses pontos são exportados para uma planilha de cálculos, onde foi desenvolvida uma rotina bastante interessante para obtenção do ponto que melhor aproximará a curva do modelo em questão aos pontos de teste reais.

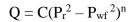
A rotina funciona da seguinte maneira, para todos os modelos com exceção de Fetkovich é criada uma coluna onde são inseridas as fórmulas para obtenção da vazão máxima respectiva a cada modelo, já que são fornecidos 16 pontos diferentes de teste de produção, cada ponto irá gerar uma vazão máxima diferente das demais. Ao lado desta coluna criou-se uma outra, onde subtrai-se a vazão máxima real da vazão máxima do modelo, com auxílio da função "ABS" que fornece o módulo desta diferença, obtendo assim, a coluna chamada de "ERRO", pois esta diferença representa o erro entre o valor real e o previsto, como visto no exemplo da Figura 35.

Qmax	Q max real	ERRO
2508,657	2435	73,6573146
2544,846	2435	109,84596
2563,139	2435	128,13941
2677,285	2435	242,284984
2775,141	2435	340,140776
2885,543	2435	450,542831
3121,159	2435	686,159338
3176,069	2435	741,069053
3627,491	2435	1192,4912
3706,186	2435	1271,18552
3878,289	2435	1443,28854
5107,515	2435	2672,51496
4528,75	2435	2093,75014
5019,559	2435	2584,55907
5032,255	2435	2597,25461

Figura 35 - Erro entre vazão máxima real e prevista para modelo de Vogel.

Após a obtenção do erro, deve-se selecionar o erro que obterá a melhor curva de aproximação aos pontos reais de teste, para isso utilizou-se a função "MENOR", onde insere-se primeiramente o intervalo que deseja-se obter o menor erro, em seguida deve-se inserir um índice que representa a colocação em ordem decrescente para este erro, ou seja, o índice 1 representa o primeiro menor erro, o índice 2 o segundo menor erro e assim por diante, o índice é inserido automaticamente ao selecionar na guia disponível ao usuário, um dos valores que variam de 1 a 15 (ver Figura 36).

	A S ASSUBBLISHED ASSESSMENT										-4- 4-4-		
×	★				×	~	f_x	=PROC\	/(H5;\$	F\$5:\$G\$19	2;FALSC		
E	E F G MENOR(matriz; k) K				E	F	G 6	PROC	/(valor	procurado;	matriz_t		
Vogel						Vogel							
Point	ERRO	Qmax	Qmax fir	nal	Q	Pwf	Point	ERRO	Qmax	Qmax fir	al	Q	Pwf
1	73,657	2508,7	=MENOR(\$F\$	2885,5	2800,819686	166	1	73,657	2508,7	450,5428308	=PROC	2800,819686	166
2	109,85	2544,8	450,5428308	2885,5	2789,337931	183	2	109,85	2544,8	450,5428308	2885,5	2789,337931	183
3	128,14	2563,1	450,5428308	2885,5	2647,845338	351	3	128,14	2563,1	450,5428308	2885,5	2647,845338	351
4	242,28	2677,3	450,5428308	2885,5	2435,798518	534	4	242,28	2677,3	450,5428308	2885,5	2435,798518	534
5	340,14	2775,1	450,5428308	2885,5	2043,172624	787	5	340,14	2775,1	450,5428308	2885,5	2043,172624	787
6	450,54	2885,5	450,5428308	2885,5	1895	867	6	450,54	2885,5	450,5428308	2885,5	1895	867
7	686,16	3121,2	450,5428308	2885,5	1631,760043	996	7	686,16	3121,2	450,5428308	2885,5	1631,760043	996
8	741,07	3176,1	450,5428308	2885,5	1476,355527	1066	8	741,07	3176,1	450,5428308	2885,5	1476,355527	1066
9	1192,5	3627,5	450,5428308	2885,5	1169,33377	1194	9	1192,5	3627,5	450,5428308	2885,5	1169,33377	1194
10	1271,2	3706,2	450,5428308	2885,5	981,0043083	1267	10	1271,2	3706,2	450,5428308	2885,5	981,0043083	1267
11	1443,3	3878,3	450,5428308	2885,5	777,5059088	1342	11	1443,3	3878,3	450,5428308	2885,5	777,5059088	1342
12	2672,5	5107,5	450,5428308	2885,5	406,7713659	1470	12	2672,5	5107,5	450,5428308	2885,5	406,7713659	1470
13	2093,8	4528,8	450,5428308	2885,5	388,6681916	1476	13	2093,8	4528,8	450,5428308	2885,5	388,6681916	1476
14	2584,6	5019,6	450,5428308	2885,5	324,7957993	1497	14	2584,6	5019,6	450,5428308	2885,5	324,7957993	1497
15	2597,3	5032,3	450,5428308	2885,5	134,7512433	1558	15	2597,3	5032,3	450,5428308	2885,5	134,7512433	1558
				2885,5	0	1600					2885,5	0	1600


Figura 36 - Utilização das funções "MENOR" e "PROVC" do Microsoft Excel.

Na imagem acima podemos ver também a utilização da função "PROVC" que tem por objetivo procurar a vazão máxima que deve ser utilizada respectiva ao erro selecionado na etapa anterior através do índice inserido na guia do usuário. Sendo assim esta vazão máxima será inserida na fórmula de Vogel (para este caso), e calculada a vazão corresponde as pressões dos pontos de teste. Para todos os demais modelos adotou-se está metodologia, com exceção de Fetkovich, que já disponibiliza de uma fórmula para encontrar as constantes "C" e "n" com base no número de pontos inseridos.

Criou-se também uma outra metodologia baseada na regressão linear, porém neste foi utilizado o botão "Solver" onde o código pode ser encontrado na seção 3.3.1.5. Esta metodologia consiste em selecionar 2 pontos diferentes, de preferência um mais próximo da pressão estática e outro mais próximo da vazão máxima, para obtenção dos melhores resultados.

Utilizando a equação abaixo e isolando a variável "C", para os 2 pontos selecionados, e posteriormente igualando as 2 equações obtidas, é possível através do solver encontrar os valores de "C" e "n" que satisfazem as 2 equações, para isso deve-se criar uma célula correspondente ao erro, o erro será a diferença entre resultado da fórmula 1 e o resultado da fórmula 2, para um valor de chute inicial de "n", esta célula é que será o ponto de partida do solver, pois dentro da ferramenta Solver do Excel, você deve selecionar esta célula e solicitar que seu valor se aproxime de zero, variando a célula correspondente ao valor de "n". Fazendo isso pelo menos 3 vezes consegue-se obter um

valor preciso para a convergência, pode-se então criar uma macro e adicioná-la a um botão.

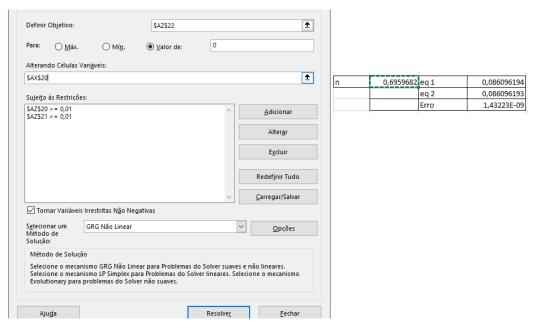


Figura 37 - Utilização da função solver para encontrar os valores de C e n.

4. RESULTADOS E DISCURSÕES

4.1. RESULTADOS PARA IPR LINEAR

Neste tópico serão expostos os resultados obtidos somente para os modelos de IPR linear, sendo eles o modelo para regime transiente, estacionário e pseudo-estacionário. Primeiramente serão apresentados os resultados individuais de cada modelo, em seguida os resultados para possíveis testes de sensibilidade e por fim a validação da ferramenta para os modelos lineares, com base na comparação dos resultados obtidos com a literatura.

4.1.1. RESULTADOS PARA IPR REGIME TRANSIENTE

Para testar se o programa é capaz de calcular o IP corretamente a partir das propriedades de reservatório, foram inseridos na ferramenta os dados de um exemplo resolvido de GUO (2017) os dados podem ser vistos na Tabela 8.

Φ	0,19
h(ft)	53
k _o (md)	8,2

μ _o (cpP)	1,7
Bo	1,1
r _w (ft)	0,328
P _e (psi)	5651
P _b (psi)	50
t (dias)	30
c _t (psi -1)	0,0000129

Tabela 4 - Dados do exemplo resolvido na bibliografia para o caso Linear regime transiênte. Fonte: GUO (2017)

As Figuras 38 e 39 apresentam, respectivamente, a curva IPR gerada e a curva prevista por GUO (2017). Pode-se notar que o IP gerado (0,207459) corresponde ao mesmo resultado arredondado calculado por GUO (2017) de 0,2075.

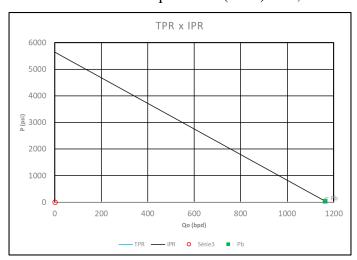


Figura 38 - Curva IPR gerada para modelo de IPR linear em regime transiente. Fonte: Elaborada pelo autor.

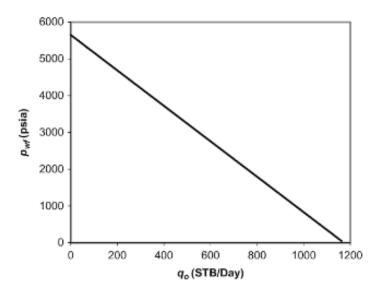


Figura 39 - Curva IPR calculada por Guo (2017) para regime transiênte. Fonte: Guo (2017).

P _{wf} (psi)	Q _o (bpd)		
1 wr (psi)	ferramenta	GUO, 2017	
50	1161,98	1162	
5651	0	0	

Tabela 5 - Resultados obtidos pela ferramenta e os obtidos por Guo para regime transiênte.

4.1.2. RESULTADOS PARA IPR REGIME PSEUDO-ESTACIONÁRIO

Para testar o modelo linear proposto para o regime pseudo-estacionário, também foram utilizados dados sugeridos por GUO (2017), e dados de um exemplo resolvido por SANTOS (2016), os dados podem ser vistos na Tabela 10 e 11 respectivamente.

h(ft)	53
k _o (md)	8,2
μ _o (cpP)	1,7
B_{o}	1,1
r _w (ft)	0,328
P _e (psi)	5651
P _b (psi)	50
S	0
A(acres)	640

Tabela 6 - Dados do exemplo resolvido na bibliografia para o caso Linear regime pseudo-estacionário. Fonte: GUO (2017)

h(ft)	53
k _o (md)	8,2
μ ₀ (cP)	1,7
B_{o}	1,1
r _w (ft)	0,328
P _e (psi)	3200
P _b (psi)	50
S	0
r _e (ft)	2980

Tabela 7 - Dados do exemplo resolvido na bibliografia para o caso Linear regime pseudo-estacionário. Fonte: SANTOS (2016).

As Figuras 40 e 41 apresentam, a comparação dos resultados para a curva IPR gerada e a curva prevista por GUO (2017) e SANTOS (2016) respectivamente. O IP encontrado pela ferramenta e pelos autores podem ser verificados na Tabela 12.

IP (STB/d-psi)				
ferramenta	GUO, 2017	SANTOS, 2016		
0,196791477	0,196778467	0,1968		

Tabela 8 - Comparação do índice IP encontrados por diferentes autores.

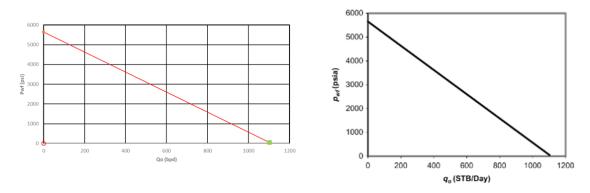


Figura 40 - Comparação entre os resultados obtidos pela ferramenta e por GUO (2017).

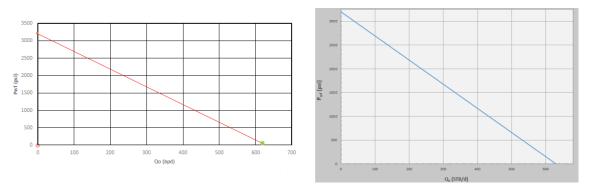


Figura 41 - Comparação entre os resultados obtidos pela ferramenta e por GUO (2017).

P _{wf} (psi)	Q _o (l	opd)
I wi (psi)	Ferramenta	GUO, 2017
50	1102,22	1102
5651	0	0

Tabela 9 - Resultados obtidos pela ferramenta e os obtidos por Guo para regime pseudo-permanente.

P c (nei)	Q _o (bpd)		
P _{wf} (psi)	Ferramenta	SANTOS, 2016	
0	629,73	629 (aproximadamente)	
3200	0	0	

Tabela 10 - Resultados obtidos pela ferramenta e os obtidos por SANTOS para regime transiente.

4.1.3. RESULTADOS PARA IPR REGIME ESTACIONÁRIO

Para o regime estacionário foram utilizados os mesmos dados da tabela 10 para o regime pseudo-estacionário.

As Figuras 42 e 43 apresentam, respectivamente, a curva IPR gerada e a curva prevista por GUO (2017).

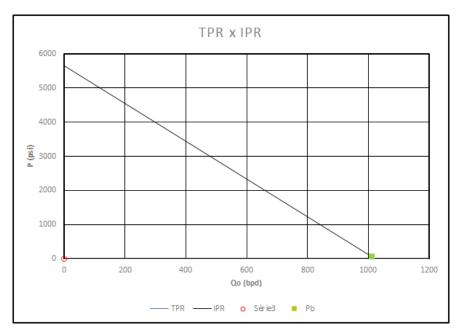


Figura 42 - Curva IPR gerada para modelo de IPR linear em regime estacionário. Fonte: Elaborada pelo autor.

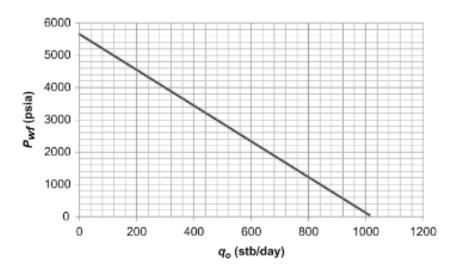


Figura 43 - Curva IPR calculada por Guo (2017) para regime estacionário. Fonte: Guo (2017).

P _{wf} (psi)	$Q_o(bpd)$		
1 wf (psi)	Ferramenta	GUO, 2017	
50	1011,46	1012	
5651	0	0	

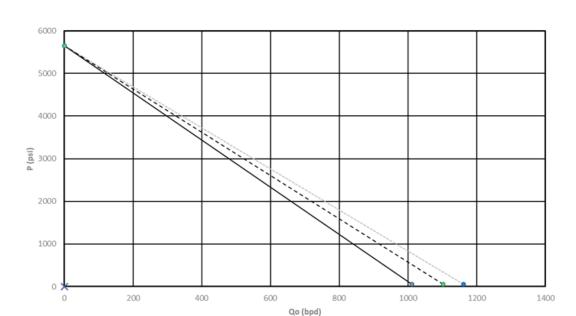


Tabela 11 - Resultados obtidos pela ferramenta e por Guo (2017) para regime estacionário.

Figura 44 - Comparativo das respostas dos regime transiente, permanente e pseudo-permanente para os dados propostos por GUO (2017).

4.1.4. RESULTADOS PARA OS TESTES DE SENSIBILIDADE

Nesta seção serão mostrados os testes de sensibilidade realizados primeiramente para modelo estacionário, em seguida os testes referentes ao modelo transiente, apenas para os parâmetros inexistentes no primeiro modelo, o modelo de regime pseudo-estacionário não será abordado, devido os seus parâmetros serem os mesmos para o modelo estacionário, tendo poucas divergências referente a suas equações, logo os parâmetros a serem avaliados, terão a mesma influencia que para modelo de regime estacionário. A mesma lógico foi adotada para não serem repedidos os mesmos parâmetros de análise no modelo transiente.

Na tabela, pode-se observar o resumo dos testes de sensibilidade realizados, contendo os valores que foram variados distintamente para cada parâmetro.

IPR	h (ft)	k (md)	P _e (psi)	B_{o}	μ _o (cp)	r _w (ft)	A (km ²)
1	53	8,2	5651	1,1	1,7	0,328	2,5919
2	43	20	1000	1	1	0,5	0,3
3	33	40	2000	1,2	2	1	0,5
4	23	60	3000	1,3	3	2	1
5	13	80	4000	1,4	4	3	2
6	63	100	5000	1,5	5	4	3

7	73	150	5500	1,6	10	5	4
8	83	200	6000	1,7	20	6	10

Tabela 12 - Resumo dos testes de sensibilidade para o regime estacionário.

Primeiramente variou-se a espessura da zona de interesse, como pode-se observar na Figura 44, quanto maior a espessura da zona maior a vazão máxima possível. Lembrando que para cada análise os demais parâmetros foram mantidos iguais, variando somente o parâmetro que se deseja observar a influência no comportamento das curvas IPR.

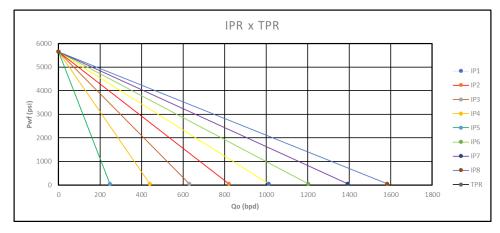


Figura 44 - Teste de sensibilidade, regime estacionário, variando espessura da zona de interesse (h).

A variação da permeabilidade efetiva resultou nas curvas obtidas na figura 45 abaixo. Quanto maior a permeabilidade maior a vazão máxima possível.

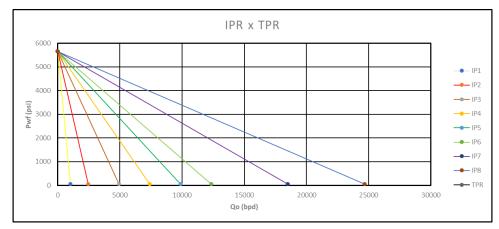


Figura 45 - Teste de sensibilidade, regime estacionário, variando a permeabilidade efetiva (k).

Quanto maior a pressão estática maior a vazão máxima obtida para a IPR, como já era esperado.

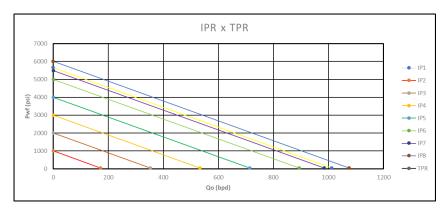


Figura 46 - Teste de sensibilidade, regime estacionário, variando a pressão estática do reservatório (Pe).

Quanto maior o fator volume formação do óleo, menor é a vazão máxima obtida pelas curvas.

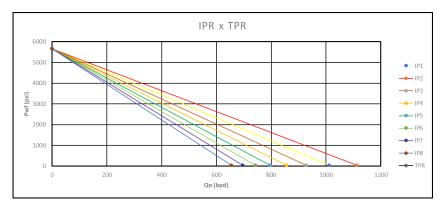


Figura 47 - Teste de sensibilidade, regime estacionário, variando o fator volume formação (Bo).

Quanto maior a viscosidade, menor a vazão máxima, porém nota-se neste caso que para valores próximos de zero, essa variação tende rapidamente à infinito, e quando a viscosidade varia de valores maiores que 1 até 100, a vazão máxima converge rapidamente para zero, acima de 100 a vazão máxima continua convergindo, porém em menor intensidade.

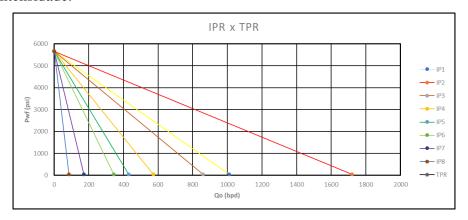


Figura 48 - Teste de sensibilidade, regime estacionário, variando a viscosidade do fluido (μο).

Quando menor o raio do poço menor a vazão máxima, o que também já era esperado.

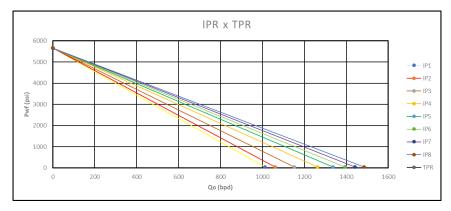


Figura 49 - Teste de sensibilidade, regime estacionário, variando o raio do poço (rw).

Quanto maior a área de drenagem menor a vazão máxima, como pode ser observado na figura abaixo.

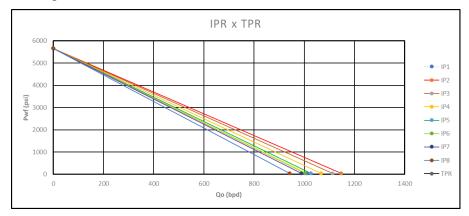


Figura 50 - Teste de sensibilidade, regime estacionário, variando a área de drenagem (A).

Para o regime transiente, foram realizados apenas testes de sensibilidade relacionados ao tempo, a porosidade e a compressibilidade total, sendo estes os únicos parâmetros divergentes nas equações dos outros 2 métodos.

Os dados referentes aos valores modificados em cada teste estão presentes na Tabela.

IPR	Φ	c _t (psi) ⁻¹	t(dias)
1	0,19	0,0000129	30
2	0,1	0,00002	60
3	0,3	0,00003	90
4	0,4	0,00004	120
5	0,6	0,00005	150
6	0,7	0,00006	180
7	0,9	0,00007	360
8	1	0,0001	720

Tabela 13 - Resumo dos testes de sensibilidade para o regime transiente.

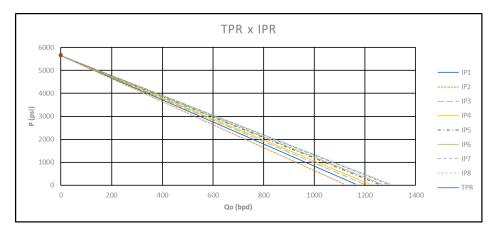


Figura 51 - Teste de sensibilidade, regime transiente, variando a porosidade (Φ).

Para a porosidade existe uma limitação relacionado aos valores inseridos, a porosidade de uma rocha só pode variar de 0 a 1, que representam em porcentagem 0 % e 100% de espaços vazios dentro da rocha, quanto maior a porosidade maior a vazão máxima, obviamente, já que terei mais espaços interconectados onde o fluido poço escoar em teoria.

Quando maior a compressibilidade total do fluido maior a vazão máxima da curva IPR, como visto na Figura.

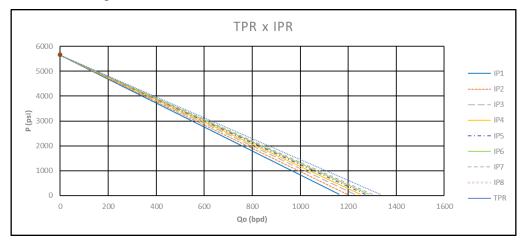


Figura 52 - Teste de sensibilidade, regime transiente, variando a compressibilidade total (ct).

Com relação a análise do tempo, notou-se que quanto maior o tempo de escoamento, para o regime transiente, menor é a vazão máxima possível.

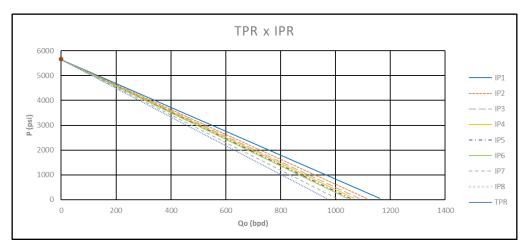


Figura 53 - Teste de sensibilidade, regime transiente, variando o tempo (t).

4.1.5. VALIDAÇÃO DA FERRAMENTA PARA IPR LINEARES

Como já foi mostrado, procurou-se comparar os resultados obtidos pela ferramenta com os resultados obtidos na literatura, logo neste tópico apenas mostramos a confiabilidade da ferramenta frente aos resultados obtidos por outros autores para a IPR linear, através da percentagem de aproximação das respostas atingidas neste trabalho com outros autores.

Teste	ERRO GUO, 2017(%)	ERRO SANTOS, 2016(%)
1	0,05%	
2	0,02%	0,12%
3	0,00%	
Confiabilidade Média	99,97%	99,88%

Tabela 14 - Confiabilidade da ferramenta para o modelo de IPR linear.

4.2. RESULTADOS PARA EQUAÇÃO DE VOGEL

Foram utilizados dados de teste para todas as equações referentes aos modelos multifásicos, sendo assim, foram utilizados pontos de teste sugeridos por GUO (2017), SANTOS (2016) e VELÁZQUEZ. Veja na Tabela abaixo esses dados.

	P _{wf} (psi)	Q _o (STB/d)	P _b (psi)	P _e (psi)	Q máx (bpd) (obtido)
SANTOS,	1805	249,347	2085	2085	1096,999
2016	905	836,427			1096,999
CHO 2017	4000	300	2000	5000	1100
GUO, 2017 2000	900	3000	5000	1157	

	2000	500		•	978	
	1000	800	3000	3000		
VELÁZQUEZ, 1987	1500	200	2000	2000	500	

Tabela 15 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo modelo de Vogel.

Para o primeiro e o segundo ponto de teste de SANTOS, 2016, a ferramenta obteve uma vazão máxima de 1096,999 bpd, a curva obtida pela ferramenta e a obtida por SANTOS, podem ser comparadas na Figura 54.

Os dados referentes ao primeiro ponto de teste de GUO, 2017, a ferramenta obteve uma vazão máxima de 1100 bpd, como pode ser visto na Figura 55.

Para o segundo ponto de teste de GUO, a ferramenta proposta obteve uma vazão máxima de 1157,14 bpd, já para o terceiro e quarto ponto, obteve 978,26 bpd e 947,36 bpd respectivamente.

Para os valores propostos por VELÁZQUEZ, 1987, a ferramenta obteve exatamente o valor de 500 bpd para a vazão máxima.

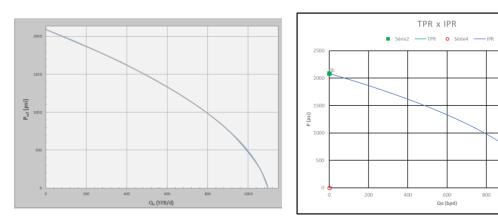


Figura 54 - Comparação da curva IPR obtida (direita) com a curva calculada por SANTOS (esquerda) para o modelo de Vogel.

Figura 55 - Comparação da curva IPR obtida (direita) com a curva do primeiro ponto de teste sugerido por GUO (esquerda) para o modelo de Vogel.

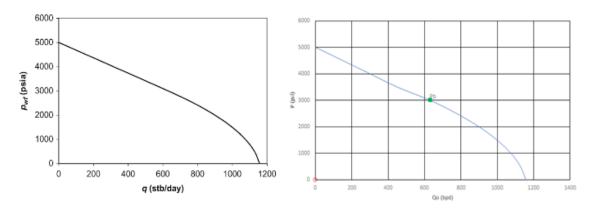


Figura 56 - Comparação da curva IPR obtida (direita) com a curva do segundo ponto de teste sugerido por GUO (esquerda) para o modelo de Vogel.

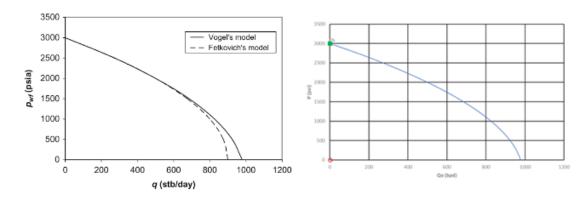


Figura 57 - Comparação da curva IPR obtida (direita) com a curva do terceiro ponto de teste sugerido por GUO (esquerda) para o modelo de Vogel.

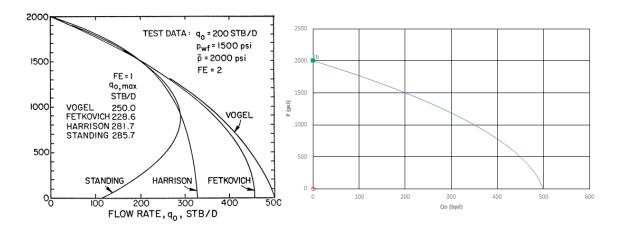


Figura 58 - Comparação da curva IPR obtida (direita) com a curva do primeiro ponto de teste sugerido por VELÁZQUEZ (esquerda) para o modelo de Vogel.

4.3. RESULTADOS PARA EQUAÇÃO DE FETKOVICH

Para Fetkvich foi adotada a mesma metodologia de comparação com os dados obtidos para Vogel na literatura.

A Tabela 20, mostra o resumo dos dados de entrada sugeridos pelos autores, e os valores de algumas variáveis intermediárias, como a vazão máxima, a variável "C" e "n".

	P _{wf} (psi)	Qo (STB/d)	P _e (psi)	Q _{máx} (bpd) (obtido)	C (stb/d.psi ²ⁿ)	n
	3170	263				
SANTOS, 2016	2897 3	383	2600	880	0,0014258	0,8140278
SAN108, 2016	2440	497	3600			
	2150	640				
GUO, 2017	2000	500	2000	978	0.0001	1
000, 2017	1000	800	3000	978	0,0001	1
VELÁZQUEZ, 1987	1500	200	2000	457,2		

Tabela 16 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo modelo de Fetkovich.

Para os 4 pontos sugeridos por SANTOS, 2016, foi obtido os dados da Tabela abaixo:

Q máx (bpd) (obtido)	C (stb/d.psi ²ⁿ)	n
931,5258	0,00235567	0,807772903

Tabela 17 - Resultados encontrados pela ferramenta para os pontos de teste propostos por SANTOS, para o modelo de Fetkovich.

A figura 59 mostra a comparação feita por SANTOS, 2016 com as curvas obtidas por BEGGS em seu trabalho, abaixo, na figura 60, observa-se a curva obtida pela ferramenta proposta nesse trabalho, pode-se verificar que a curva obtida foi mais próxima a curva que BEGGS e não a curva que SANTOS propôs.

SANTOS, 2016 diz em seu trabalho que uma limitação da ferramenta proposta foi identificada nesse caso. Ao utilizar o método de mínimos quadrados (método estatístico aplicado pelo Excel para definir a melhor reta), o programa fica suscetível a produzir uma reta que um engenheiro nesta situação talvez optaria por traça-la de forma diferente. Desta maneira o resultado de BEGGS na verdade é uma melhor fonte literária para comparar os dados obtidos pela ferramenta proposta, já que SANTOS não obteve resultados satisfatórios.

A vazão máxima obtida por BEGGS é aproximadamente 935 bpd.

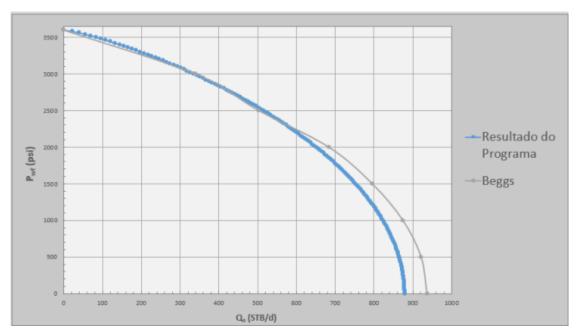


Figura 59 - Comparação da curva IPR obtida por SANTOS com a curva de BEGGS para o modelo de Fetkovich.

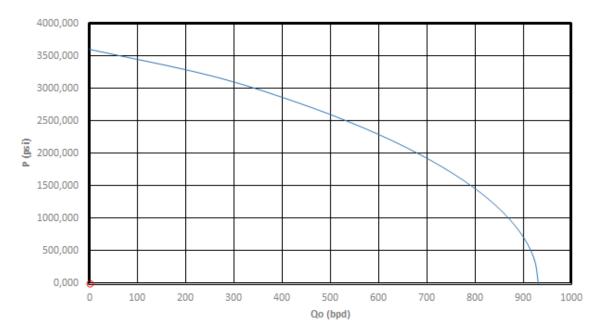


Figura 60 - Curva IPR obtida pela ferramenta para os pontos fornecidos por SANTOS e BEGGS para o modelo de Fetkovich

Para os pontos propostos por GUO, os resultados obtidos podem ser verificados na Tabela 22, onde houve bastante divergência nas respostas de GUO com as encontradas por este trabalho.

Q máx (bpd) (obtido)	C (stb/d.psi ²ⁿ)	n
921,148	0,0004293	0,8901866

Tabela 18 - Resultados encontrados pela ferramenta para os pontos de teste propostos por GUO, para o modelo de Fetkovich.

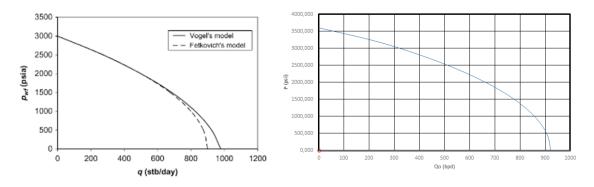


Figura 61 - Comparação da curva IPR obtida (direita) com a curva para os pontos de teste sugerido por GUO (esquerda), modelo de Fetkovich.

Para o ponto proposto na tese de VELÁZQUEZ, o resultado obtido pela ferramenta para a vazão máxima foi de 457,14 bpd. (Figura 62).

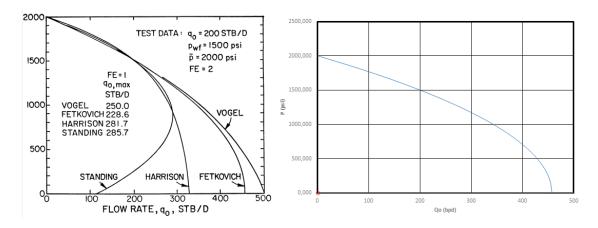


Figura 62 - Comparação dos resultados obtidos pela ferramenta e os alcançados por VELÁZQUEZ em sua tese para Fetkovich.

4.4. RESULTADOS PARA EQUAÇÃO DE STANDING

Para Standing foram utilizados os dados da literatura fornecidos por BETÔNICO, 2011 E VELÁZQUEZ, 1987, como segue na Tabela.

	P _{wf} (psi)	Q _o (STB/d)	P _b (psi)	P _e (psi)	EF	Q _{máx} (bpd) (obtido)
BETÔNICO,	100	30	150	150	0,72	77,9
2011	80	40	130	130	(calculado)	11,9
VELÁZQUEZ, 1987	1500	200	2000	2000	2	285,7

Tabela 19 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo modelo de Standing.

Os resultados obtidos para os pontos de teste sugeridos por BETÔNICO (2011), constam na tabela abaixo, e a Figura, ilustra uma comparação entre as curvas de eficiência igual a 1 e diferente de 1, resultantes da ferramenta e dos valores alcançados por BETÔNICO (2011).

Q máx (bpd) (obtido)	EF
68,57	0,718085

Tabela 20 - Resultados encontrados pela ferramenta para os pontos de teste propostos por BETÔNICO, para o modelo de Standing.



Figura 63 - Comparação dos resultados obtidos pela ferramenta e os alcançados por BETÔNICO (2011) para Standing.

Para os dados de VELÁZQUEZ (1987), obteve-se os seguintes resultados:

Q máx (bpd) (obtido)	EF
285,72	2

Tabela 21 - Resultados encontrados pela ferramenta para os pontos de teste propostos por VELÁZQUEZ (1987), para o modelo de Standing.

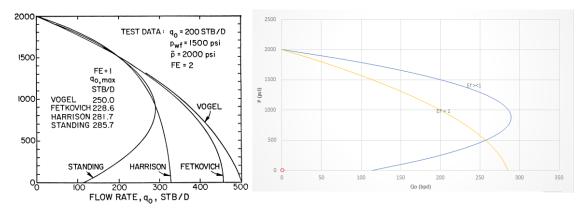


Figura 64 - Comparação dos resultados obtidos pela ferramenta e os alcançados por VELÁZQUEZ (1987), para Standing.

4.5. RESULTADOS PARA EQUAÇÃO DE PATTON & GOLAND

Para o método de Patton & Goland, foram utilizados os dados fornecidos por BETÔNICO, 2011, os seus dados de entrada e saída encontram-se na Tabela 22.

	P _{wf} (psi)	Q _o (STB/d)	P _b (psi)	P _e (psi)	Q máx (bpd) (obtido)
BETÔNICO, 2011	2986,2	1258	1000.9	2001 6	3913,8
BETONICO, 2011	1216,6	1258	1990,8	990,8 3981,6	1409

Tabela 22 - Resumo dos valores sugeridos por outras literaturas para encontrar a IPR pelo modelo de Patton & Goland.

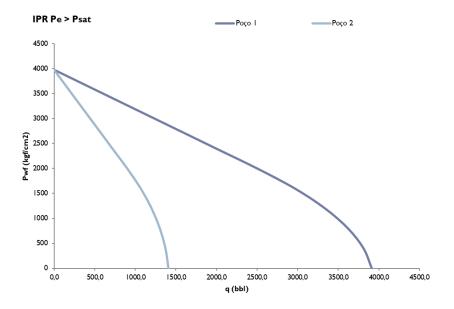


Figura 65 - Resultados encontrados por BETÔNICO (2011), para o modelo de Patton & Goland.

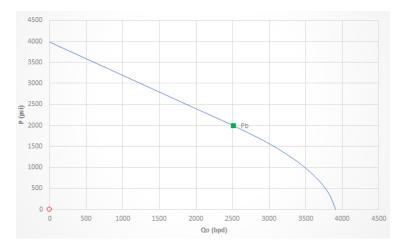


Figura 66 - Resultados encontrados pela ferramenta para o primeiro ponto de teste fornecido por BENTÔNICO (2011). Modelo de Patton & Goland.

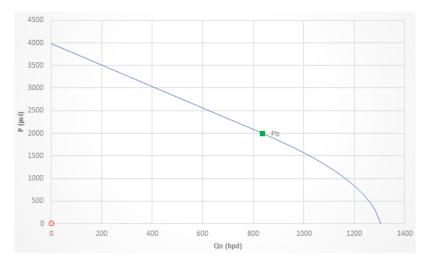


Figura 67 - Resultados encontrados pela ferramenta para o segundo ponto de teste fornecido por BENTÔNICO (2011). Modelo de Patton & Goland.

Os resultados numéricos encontrados para este método estão dispostos na Tabela.

Q máx
(bpd)
(obtido)
3913,778
1408,96

Tabela 23 - Vazão máxima para os pontos de teste de BENTÔNICO (2011). Modelo de Patton & Goland.

4.6. RESULTADOS PARA EQUAÇÃO DE WIGGINS

Devido à falta de dados pra este método na literatura, foram inseridos os parâmetros da Tabela 24.

Pwf	Qo	Pb	Pe
(psi)	(STB/d)	(psi)	(psi)
1500	200	2000	2000

Tabela 24 - Dados de entrada inseridos para obtanção da curva IPR para o modelo de Wiggins

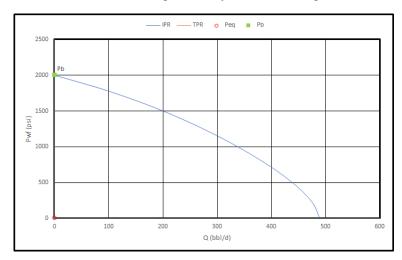


Figura 68 - Resultado obtido para a curva IPR para o modelo de Wiggins.

A vazão máxima para este método com base nos dados inseridos de entrada, foi de 488,71 bpd.

4.7. RESULTADOS PARA EQUAÇÃO DE KINS-CLARK

Para este método também não foram encontrados dados das curvas IPR na literatura, por isso foram inseridos os mesmos dados da tabela 26. A vazão máxima encontrada foi de 399,06 bpd.

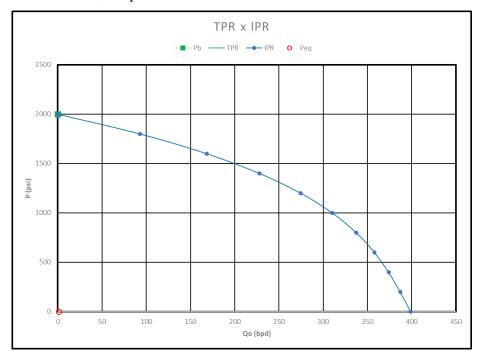


Figura 69 - Resultado obtido para a curva IPR para o modelo de Klins-clark

4.8. RESULTADOS PARA AS COMPARAÇÃO DOS MODELOS COM DADOS REAIS

Para verificar a aproximação das curvas IPR previstas pelos modelos aos pontos reais de teste de produção, foram coletadas informações respectivas a 1 caso real de campo.

Para testar a precisão e a confiabilidade do novo modelo de IPR desenvolvido por FATTAH, 2012, o mesmo disponibilizou os dados da Tabela contento os pontos de teste para o poço vertical da cidade de Carry, Oklahoma. O teste foi conduzido em aproximadamente 2 semanas, estava produzindo a taxas aleatórias, ao invés de aumentar ou diminuir a sequência de taxa. A pressão média do reservatório era de 1600 psia, com

uma pressão estimada de ponto de bolha de 2530 psia e um fator película de aproximadamente zero.

Dados de Teste					
pwf, psia	qo, STB/D				
1600	0				
1558	235				
1497	565				
1476	610				
1470	720				
1342	1045				
1267	1260				
1194	1470				
1066	1625				
996	1765				
867	1895				
787	1965				
534	2260				
351	2353				
183	2435				
166	2450				

Tabela 25 - Pontos de teste de produção real. Fonte: FATTAH, 2012.

FATTAH, 2012, utilizou o método de ponto único, onde ele selecionou um único ponto de teste para calcular as curvas de IPR de previsão de cada método escolhido em seu trabalho e comparar com o método desenvolvido por ele.

Apesar de FATTAH, 2012, ter utilizado 12 casos reais de poços para encontrar uma média de aproximação e precisão de cada método, ele não atentou que haviam pontos de teste para cada caso que resultariam em curvas mais próximas dos pontos reais, o autor simplesmente escolheu um ponto para cada caso e obteve um erro de aproximação com base naquele ponto.

Obtendo assim um erro muito alto para os métodos de Vogel, Wiggins e Fetkovich, como apresentado em seu trabalho, estes métodos ficaram com 26%, 8, 56% e 32,3 % de erro absoluto respectivamente.

Para otimizar os resultados encontrados por cada um dos métodos apresentados neste trabalho, adotou-se uma metodologia diferente da de FATTAH, 2012, ao invés de escolher um ponto aleatório do teste de produção, a ferramenta calcula uma vazão máxima para cada ponto fornecido. Em seguida compara a vazão máxima real com as vazões máximas encontradas, através da diferença entre essas 2 vazões é obtido um erro

relativo a vazão máxima. Então a ferramenta seleciona de maneira classificatória o menor erro relativo a este parâmetro, com base num dado de entrada do usuário, neste caso, um índice escolhido, por exemplo, se o usuário selecionar o índice 1, a ferramenta irá selecionar o ponto que obtém o primeiro menor erro relativo a vazão máxima, se o usuário escolher o índice 4, a ferramenta irá selecionar o ponto que obtém o quarto menor erro relativo a vazão máxima, e assim por diante.

Como resultado é possível escolher a resposta numérica das curvas em unidades de vazão ou em erro absoluto, ao final a ferramenta mostra o erro médio absoluto para curva em relação aos pontos de teste reais, assim o usuário pode otimizar e escolher a curva que apresenta o menor erro médio absoluto, aproximando a melhor curva possível dos pontos.

A Figura 77 mostra as curvas IPR resultantes para os diferentes métodos de cálculos, como Vogel, Fetkovich (para 1 e 15 pontos), Wiggins, Klins-clark, Standing, Patton & Goland e uma nova metodologia adotada baseada na equação de Fetkovich, em comparação com os dados de campo reais. Na Tabela 26 e 27 constam os dados numéricos referentes a vazão e erro absoluto respectivamente.

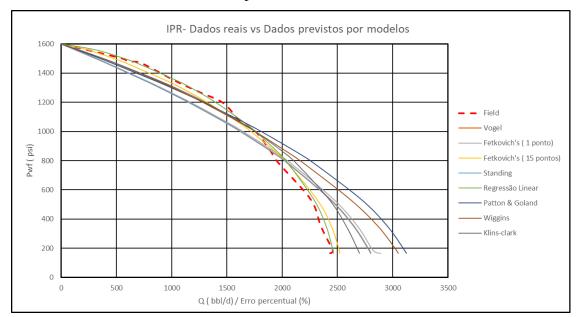


Figura 70 - As curvas de entrada previstas pelos diferentes métodos utilizados em comparação com os dados de campo reais.

Fica claro a partir da figura acima que a nova metodologia de IPR desenvolvida é capaz de estimar o desempenho real do poço. Além disso, pode-se concluir claramente a partir dessa figura que a nova metodologia do modelo IPR desenvolvido e o modelo de Fetkovich para 15 pontos estimam quase a taxa máxima de fluxo de óleo para este poço

com mais precisão do que os outros modelos e, como indicado, os outros métodos superestimam o desempenho real.

					q _o (st	tb/d) / Erro per	centual (%)	azão prevista 🔻		
Point	P _{wf} (psia)	Field	Vogel	Fetkovich's (1 ponto)	Fetkovich's (15 pontos)	Standing	Regressão Linear	Patton & Goland	Wiggins	Klins-Clark
1	166	2435	2800,819686	2890,625395	2520,279601	2800,819686	2464,019044	3125,486691	3052,341997	2700,23761
2	183	2460	2789,337931	2824,655813	2515,597602	2789,337931	2460	3112,676781	3039,195123	2690,490089
3	351	2352	2647,845338	2681,371677	2444,520248	2647,845338	2398,873641	2954,80656	2869,41564	2581,811513
4	534	2260	2435,798518	2466,639975	2314,810101	2435,798518	2286,75761	2718,198227	2618,463895	2427,056936
5	787	1965	2043,172624	2069,042752	2040,835331	2043,172624	2047,350993	2280,072639	2187,530367	2121,990885
6	867	1895	1895	1918,994004	1929,7191	1895	1949,158112	2114,725044	2033,240413	1997,914334
7	996	1765	1631,760043	1652,42097	1723,44405	1631,760043	1765,000029	1820,96914	1765	1765
8	1066	1625	1476,355527	1495,048762	1596,425271	1476,355527	1650,272468	1647,547893	1608,182904	1620,155224
9	1194	1470	1169,33377	1184,139574	1333,347931	1169,33377	1408,961449	1304,929158	1296,995764	1318,59248
10	1267	1260	981,0043083	993,4255333	1163,003729	981,0043083	1249,63925	1094,762855	1102,836407	1123,881399
11	1342	1045	777,5059088	787,3504893	969,6488566	777,5059088	1065,269706	867,6677952	888,3508856	905,5196208
12	1470	720	406,7713659	411,9218007	582,4931504	406,7713659	681,0182096	453,9425503	480,4128406	487,3746541
13	1476	610	388,6681916	393,5894086	561,9455829	388,6681916	659,8822507	433,7400531	459,8173959	466,3066769
14	1497	565	324,7957993	328,9082804	487,6997298	324,7957993	582,6915546	362,4606974	386,5933353	391,5025233
15	1558	235	134,7512433	136,457429	243,2302695	134,7512433	316,3686208	150,3772473	163,2937693	164,6519222
16	1600	0	0	0	0	0	0	0	0	0

Tabela 26 - Previsão do melhor desempenho encontrado referente a vazão para o estudo de caso, através da otimização das curvas para cada modelo.

					q _o (st	tb/d) / Erro per	centual (%)	ro percentual 🔻		
Point	P _{wf} (psia)	Field	Vogel	Fetkovich's (1 ponto)	Fetkovich's (15 pontos)	Standing	Regressão Linear	Patton & Goland	Wiggins	Klins-Clark
1	166	2435	-15,02339575	-18,7115152	-3,502242341	-15,02339575	-1,191747185	-28,35674294	-25,35285407	-10,89271498
2	183	2460	-13,38772078	-14,82340703	-2,260065135	-13,38772078	0	-26,53157645	-23,5445172	-9,369515827
3	351	2352	-12,57845827	-14,00389784	-3,933684011	-12,57845827	-1,992926909	-25,62953062	-21,99896427	-9,770897642
4	534	2260	-7,7786955	-9,143361708	-2,425225701	-7,7786955	-1,183965025	-20,27425785	-15,86123431	-7,391899809
5	787	1965	-3,978250604	-5,294796553	-3,859304354	-3,978250604	-4,190890214	-16,03423098	-11,32470062	-7,989358009
6	867	1895	0	-1,26617436	-1,832142494	0	-2,857947871	-11,59498911	-7,295008582	-5,430835583
7	996	1765	7,549006055	6,378415274	2,354444759	7,549006055	-1,66353E-06	-3,171056102	0	0
8	1066	1625	9,147352182	7,99699925	1,758444892	9,147352182	-1,555228805	-1,387562629	1,034898214	0,29814004
9	1194	1470	20,45348504	19,44628747	9,296059106	20,45348504	4,152282377	11,22930896	11,76899565	10,29983127
10	1267	1260	22,14251521	21,1567037	7,698116759	22,14251521	0,822281772	13,11405915	12,47330102	10,80306358
11	1342	1045	25,59752068	24,65545557	7,210635731	25,59752068	-1,939684766	16,96958897	14,99034588	13,3474047
12	1470	720	43,50397695	42,7886388	19,09817356	43,50397695	5,414137559	36,95242357	33,27599436	32,30907582
13	1476	610	36,28390302	35,47714613	7,877773295	36,28390302	-8,177418141	28,89507327	24,62009904	23,55628247
14	1497	565	42,51401782	41,78614505	13,68146375	42,51401782	-3,1312486	35,84766417	31,57640084	30,707518
15	1558	235	42,65904542	41,93300895	-3,502242341	42,65904542	-34,62494503	36,00968201	30,51328966	29,93535227
16	1600	0	0	0	0	0	0	0	0	0

Tabela 27 - Previsão do melhor desempenho encontrado referente ao erro absoluto para o estudo de caso, através da otimização das curvas para cada modelo.

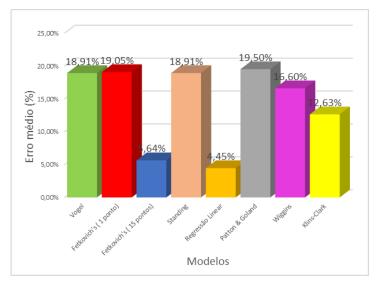


Figura 71 - O percentual médio de erros absolutos para todos os modelos.

A Figura 71 apresenta um resumo do percentual médio de erros absolutos que foi obtido para cada método para o estudo de caso examinado.

A partir dessa figura observa-se que a nova metodologia para calcular a IPR tem o menor percentual de erro absoluto médio que é de 4,45%, enquanto o percentual médio de erro absoluto para o método de Fetkovich com 15 pontoes é de 5,64%. Os outros métodos de ponto único têm percentuais de erros absolutos médios variando de 12,63 a 19,5% para Klins-clark e Patton & Goland, respectivamente.

Sendo assim a metodologia proposta para solucionar a equação de Fetkovich obteve o valor mais baixo para a média total do erro absoluto percentual, que é de 4,45% e Fetkovich convencional teve o segundo menor erro percentual. Os outros métodos forneceram valores menos precisos para as estimativas da taxa de vazão dos dados reais do poço que foram usados nesta análise

A nova metodologia que foi proposta, através da equação de Fetkovich e com a ferramenta solver do Excel, consiste em escolher 2 pontos de teste para este estudo de caso, desta maneira igualaram-se as 2 equações obtidas para os 2 pontos e com o solver foi possível obter os resultados numéricos para "C" e "n", assim podendo obter os demais pontos da reta.

$$Q_o = C(P_e^2 - P_{wf}^2)^n$$

Isolando a variável C:

$$C = \frac{Q_o}{\left(P_e^2 - P_{wf}^2\right)^n}$$

Igualando-se as 2 equações para os 2 pontos:

$$C = \frac{Q_{o1}}{\left(P_e^2 - P_{wf1}^2\right)^n} = \frac{Q_{o2}}{\left(P_e^2 - P_{wf2}^2\right)^n}$$

É possível também solucionar este problema através de regressão linear, obtendo a melhor reta que passa pelos pontos de teste, assim podendo ter acesso através de uma ferramenta do Microsoft Excel, os coeficientes angular e linear da reta, como visto na Figura 79.

Através desta nova metodologia também foi possível observar que os melhores resultados obtidos surgem quando os 2 pontos escolhidos do novo modelo de IPR desenvolvido, encontram-se em regiões diferentes da curva. Basicamente um ponto deve estar mais próximo da pressão estática e o outro mais próximo da vazão máxima, para obtenção dos melhores resultados. Se os dois pontos se encontrarem na mesma região da

curva em que não passa pelo maior ponto de inflexão o resultado obtido é de um erro médio absoluto superestimado.

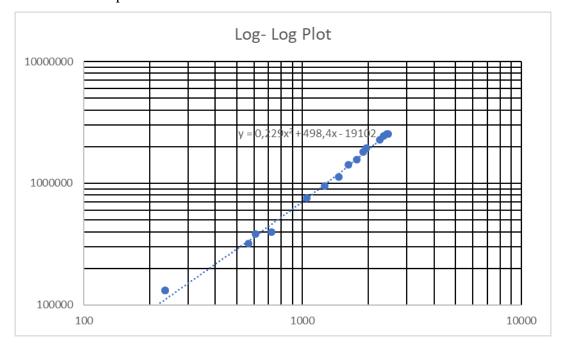


Figura 72 - Regressão linear para solução da equação de Fetkovich.

As Figuras 73 e 74 mostram exemplos de pontos que não fornecem resultados precisos. Já a Figura 75 mostra uma boa escolha dos pontos de teste que fornecerão excelente resultados.

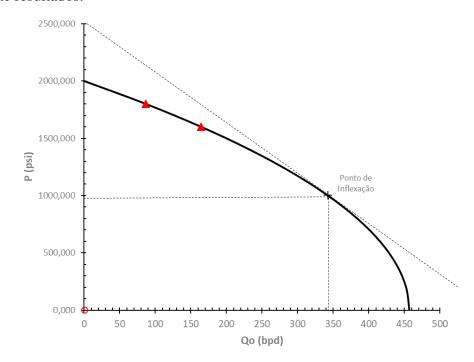


Figura 73 – Exemplo de pontos de teste escolhidos com resposta da curva IPR não desejada.



Figura 74 – Segundo Exemplo de Pontos de teste escolhidos com resposta da curva IPR não desejada.

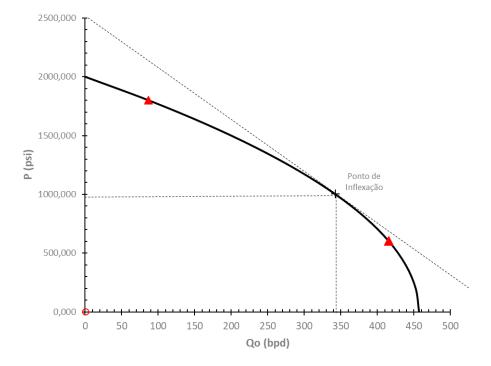


Figura 75 - Exemplo de Pontos de teste escolhidos com resposta desejada para curva IPR.

Outro resultado importante obtido, foi que para os demais métodos percebeu-se que os pontos que obtiveram as curvas com o menor erro percentual médio absoluto, foram os pontos próximos ao ponto de inflexão da curva, variando entre o ponto 6 ao 8, pontos mais próximos da pressão estática ou da vazão máxima não obtiveram bons resultados (Figura 76).

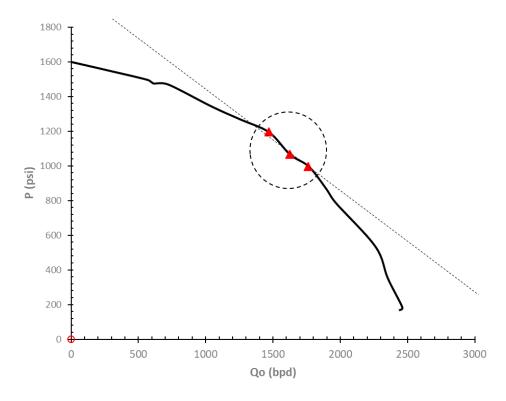


Figura 76 - Ilustração dos pontos que obtiveram os melhores resultados para os métodos que necessitam de apenas um ponto.

4.9. VALIDAÇÃO DA FERRAMENTA PARA IPR BASEADA EM FLUXO MULTIFÁSICO

Nesta seção serão apresentados os dados referentes a confiabilidade da ferramenta desenvolvida, para um reservatório multifásico, quando comparada com os resultados encontrados na literatura. A Figura 77 mostra que que o erro médio da ferramenta em comparação com a literatura é muito baixo, assim como na Figura 78, que mostra o erro percentual absoluto pontualmente em números muito baixos, confirmando a confiabilidade da ferramenta, as Figuras 79 e 80 mostram a comparação dos resultados obtidos pela ferramenta e pelos autores para os modelos de Patton e Fetkovich respectivamente. O modelo de Wiggins e Klins-clark não foram comparados devido a falta de dados disponíveis na literatura.

Se observarmos os resultados obtidos para o modelo de Fetkovich, foram os que apresentaram a maior divergência entre os resultados obtidos pelos autores e o resultado obtido neste trabalho, isso pode ser em decorrência das diversas maneiras existentes de solucionar as equações de Vogel.

Contudo no geral, o erro médio absoluto encontrado para toda a ferramenta é algo muito baixo, confirmando a confiabilidade da mesma.

	Standing								Ferramenta		
	Pwf (psi)	Qo (STB/d)	Pb (psi)	Pe (psi)	EF	Q máx (bpd) (obtido)	Q máx (bpd) (obtido)	EF	ERRO Médio(%)		
BETÔNICO, 2011	100 80	30 40	150	150	0,72 (calculado)	68,6	68,57	0,718085 _(calculado)	0,044%		
VELÁZQUEZ, 1987	1500	200	2000	2000	2	285,7	285,72	2	0,007%		

Figura 77 - Erro médio absoluto para Standing.

		Ferramenta					
	Pwf (psi)	Qo	Pb (psi)	Pe (psi)	Q máx (bpd)	_	
	4 /	(STB/d)			(obtido)	(obtido)	ERRO Médio(%)
SANTOS, 2016	1805	249,35	2085	2085	1096,999	1096,999	0,000%
SAN103, 2010	905	836,43	2003	2003	1096,999	1096,999	0,000%
	4000	300	3000	5000	1100	1100	0,000%
GUO, 2017	2000	900			1157	1157,14	0,012%
000, 2017	2000	500	3000	3000	978	978,26	0,027%
	1000	800	3000	3000		947,36	
VELÁZQUEZ, 1987	1500	200	2000	2000	250	250	0,000%

Figura 78 - Erro médio absoluto para Vogel

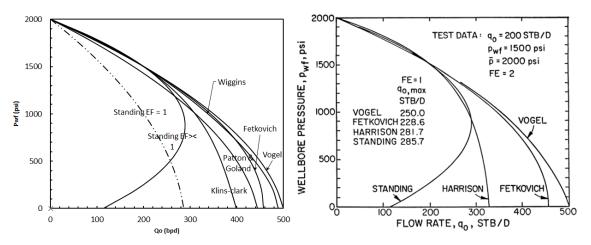
	Р	atton & G	oland			Ferramenta	
	Purf (nei)	Qo (STB/d)	Ph (pei)	Pe (psi)	Q máx (bpd)	Q máx (bpd)	
	1 wi (psi)	Qu (STD/u)	T U (psi)	i e (psi)	(obtido)	(obtido)	ERRO Médio(%)
BETÔNICO, 2011	2986,2	1258	1990.8	3981.6	3913,8	3913,778	0,001%
DETONICO, 2011	1216,6	1258	1990,8	3981,0	1409	1408,96	0,003%

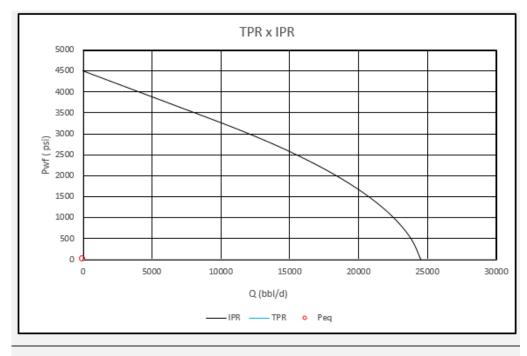
Figura 79 - Erro médio absoluto para Patton & Goland.

	Fetkovich								Ferramenta			
	Pwf (psi)	Qo (STB/d)	Pe (psi)	Q máx (bpd) (obtido)	C (stb/d.psi ²ⁿ)	n	Q máx (bpd) (obtido)	ERRO Médio(%)	C (stb/d.psi ²ⁿ)	n		
	3170	263					931,62 5,541	5 5/11%	0,0009076			
SANTOS, 2016	2897	383	3600	3600 880	0,0014258	0,8140278				0,8451689		
SAN103, 2010	2440	497	3000					3,341/0		0,0431003		
	2150	640										
CUO 2017	2000	500	3000	978	0.0001	1	900	8,667%				
GUO, 2017	1000	800	3000	978	0,0001	1	900	8,667%				
VELÁZQUEZ, 1987	1500	200	2000	457,2			457,1428	0,013%				

Figura 80 - Erro médio absoluto para Fetkovich.

A Figura 81 abaixo mostra os resultados obtidos na tese de VELÁZQUEZ, 1987 comparados com os resultados obtidos nesta ferramenta para os modelos de Vogel, Standing com eficiência igual a dois e Fetkovich, com base nos mesmos dados de entrada. Estes resultados foram idênticos à tese de doutorado de VELÁZQUEZ, 1987.




Figura 81 – Comparação dos resultados encontrados por VELÁZQUEZ, 1987 à esquerda e pela ferramenta à direita.

4.10. RESULTADOS PARA O MÉTODO DE PREVISÃO DE PONTOS DE TESTE

Na Tabela abaixo constam os dados de entrada para obtenção dos 4 modelos de curvas IPR possíveis através desta metodologia, e nas Figuras 82,83,84 e 85 a ilustração das curvas obtidas pela ferramenta com alguns dados de saída na parte inferior da imagem, como, a vazão máxima, a pressão de fluxo de fundo prevista, a vazão prevista para esta respectiva pressão, a previsão da pressão de bolha e o tipo de curva IPR.

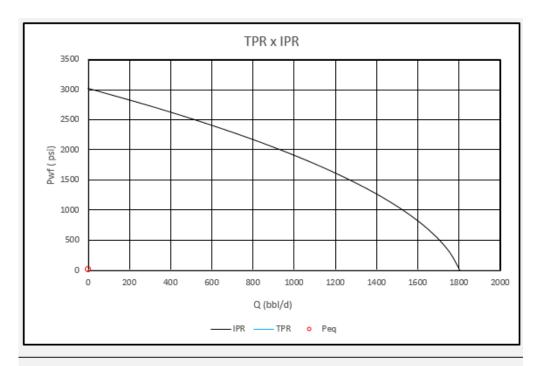

	Combinado	Vogel	Linear	Standing
API	42	35	38	45
Choke (ft)	1,5	1,5	1	2,6
Abertura	50%	70%	90%	90%
ΛL	0,5	0,8	0,9	0,9
pg (lb/ft3)	18	20	20	20
Pwh (psi)	720	250	190	190
Pdownc (psi)	680	220	180	180
μm (cp)	0,88	0,88	0,88	0,88
Profundidade (m)	2500	2000	2140	2140
RGL (scf/ctb)	850	1687	387	1200
Pe (psi)	4500	3021	4210	4210
γrg	0,7	0,667	0,667	0,667
C	0,9	0,9	0,9	0,2
T (F)	250	200	180	180
Tup (F)	130	180	160	130
K	1,3	1,3	1,2	1,9
EF				2

Tabela 28 - Dados de entrada para as diferentes curvas IPR utilizando a previsão do ponto de teste.

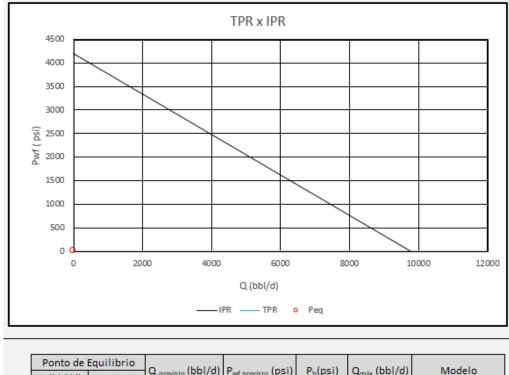
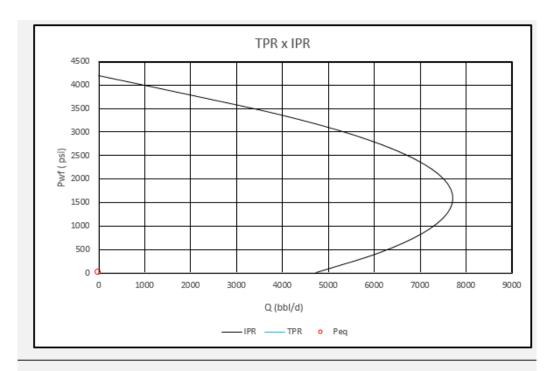

Ponto de I	Equilibrio	O (PPI/4)	D (nsi)	P. (psi)	O (bbl/d)	Modelo	
Q (bbl/d)	P _{wf} (psi)	Q _{previsto} (bbl/d)	Pwf previsto (PST)	P _b (psi)	Q _{máx} (bbi/d)		
Não Existe	Não Existe	10094,74	3251,92	3305,39	24522,42	Vogel Combinado	

Figura 82 - Curva IPR para modelo de Vogel combinado. Método 2 de cálculo.

Ponto de	Equilibrio	O (FF1/4)	D (nei)	P. (psi)	O . (bbl/d)	Modelo	
Q (bbl/d)	P _{wf} (psi)	Q previsto (bbl/d)	P _{wf previsto} (PSI)	P _b (psi)	Q _{máx} (bbi/d)	Iviodelo	
Não Existe	Não Existe	2410,80	2371,31	6720,62	1804,60	Vogel	


Figura 83 - Curva IPR para modelo de Vogel. Método 2 de cálculo.

 Ponto de Equilibrio
 Q (bbl/d)
 P_{wf}(psi)
 Q previsto (bbl/d)
 P_{wf previsto} (psi)
 P_b(psi)
 Q_{máx} (bbl/d)
 Modelo

 Não Existe
 Não Existe
 3184,79
 2833,42
 1722,95
 9740,06
 Darcy

Figura 84 - Curva IPR para modelo Linear. Método 2 de cálculo.

Ponto de I	Equilibrio	O (PP1/4)	D (nsi)	P. (nei)	O (bbl/d)	Modelo	
Q (bbl/d)	P _{wf} (psi)	Q previsto (bbl/d)	P _{wf previsto} (pSI)	P _b (psi)	Q _{máx} (bbi/d)	Modelo	
Não Existe	Não Existe	6240,70	2703,26	3631,04	4730,59	Standing	

Figura 85 - Curva IPR para modelo de Standing. Método 2 de cálculo.

4.11. RESULTADOS PARA A ESCOLHA DO MÉTODO DE ELEVAÇÃO MAIS ADEQUADO

Nesta seção serão descritos os testes realizados para a determinação do melhor método de elevação considerando diversos contextos de produção. TAVARES, 2015 em seu estudo, desenvolveu uma ferramenta parecida, e submeteu a dois engenheiros da Petrobras, os casos considerados em seu trabalho. Os engenheiros foram entrevistados e colocaram sua opinião sobre o melhor método de elevação em cada caso.

Os mesmos dados usados por TAVARES, 2015 serão utilizados neste trabalho, para comparar os resultados obtidos com a literatura e com a opinião dos engenheiros entrevistados.

O primeiro caso considera um poço em ambiente *offshore*, com alta profundidade e alta vazão de produção. Os parâmetros de entrada são especificados na tabela 29.

Profundidade (ft)	8000
Vazão (bdp)	10000
Temperatura (F)	150
RGO (scf/stb)	100
Viscosidade (cp)	200
BSW (%)	30
Disponibilidade de gás comprimido (S/N)	S
Ambiente (offshore/onshore)	Offshore

Tabela 29 - Parâmetros de entrada para o primeiro caso.

A tabela a seguir especifica o limite de profundidade para o método de elevação por bombeio mecânico em relação à vazão de entrada para o primeiro caso.

Vazão de Entrada	
(bpd)	Profundidade Máxima (ft)
10000	Vazão máxima excedida

Tabela 30 - Limite de profundidade para o BM. Primeiro caso.

Após a especificação dos parâmetros de entrada para o primeiro teste os métodos considerados aplicáveis para tal caso são o bombeio centrífugo submerso e o *gas lift* conforme a tabela 30. O bombeio mecânico e o bombeio por cavidades progressivas não

apresentam profundidade e vazão adequadas para os parâmetros de entrada e, além disso, o BM não se aplica a ambientes *offshore*.

CONDIÇOES A SEREM ATENDIDAS - PRIMEIRA ETAPA					
Parâmetro	BM	ВСР	BCS	Gas Lift	
Profundidade Máxima (ft)	Profundidade Máxima excedida	Profundidade Máxima Excedida	OK	OK	
Vazão Máxima (bpd)	Vazão Máxima Excedida	Vazão Máxima Excedida	OK	OK	
Temperatura (F)	OK	OK	OK	OK	
RGO (scf/stb)	OK	OK	OK	OK	
Viscosidade (cp)	OK	OK	OK	OK	
BSW (%)	OK	OK	OK	OK	
Profundidade Mínima (ft)	Ok	Ok	Ok	Ok	
Vazão Mínima (bpd)	OK	OK	OK	OK	
Ambiente	Não adequado ao ambiente offshore	OK	OK	OK	
Disponibilidade de Gás	OK	OK	OK	OK	

Tabela 31 - Etapa eliminatório para o primeiro caso.

A segunda etapa irá pontuar cada parâmetro de funcionamento do BCS e *gas lift*, e realizar a média aritmética para obter o conceito final de cada método, para o primeiro caso o BCS foi apontado como o método de elevação mais adequado, é observado que o baixo RGO foi o fator determinante, uma vez que no método de elevação por *gas lift* baixos valores de RGO levam a um maior consumo de gás. Os conceitos finais para o BCS e *gas lift* são mostrados nas tabelas 32 e 33.

LÓGICA FUZZY - SEGUNDA ETAPA						
Parâmetro	BM	BCP	BCS	Gas Lift		
Profundidade Máxima (ft)			1	1		
Vazão Máxima (bpd)			1	1		
Temperatura (F)			1	1		
RGO (scf/stb)			1	0		
Viscosidade (cp)			0	0,666666667		
BSW (%)			1	1		
Conceito Final			0,83333	0,777777778		

Tabela 32 - Etapa classificatória para o primeiro caso.

Não se aplica	BM
Não se aplica	ВСР
0,833333333	BCS
0,77777778	Gas Lift

Tabela 33 - Média da Pontuação classificatória para o primeiro caso.

Considerando os parâmetros de entrada, para o primeiro caso, segundo TAVARES, 2015, para os engenheiros especialistas os métodos de elevação por bombeio mecânico e por cavidades progressivas não seriam adequados para as condições especificadas. Devido a um baixo RGO, ambos concordaram que para tal o caso o *gás lift* não seria a melhor escolha, sobrando assim o BCS como método mais adequado para este caso.

O segundo caso é representado por um ambiente onshore de grande profundidade, alta viscosidade, uma vazão, temperatura e RGO baixos. A Tabela 34 mostra os parâmetros de entrada para este estudo de caso.

O terceiro caso representa um poço em ambiente onshore também, porém com profundidade moderada, alta vazão e temperatura. Os parâmetros de entrada para esse caso estão na Tabela 35.

O quarto e último caso também é para ambiente onshore, com profundidade e vazão moderadas, médio RGO e alto BSW conforme descrito na tabela 36.

Profundidade (ft)	4500
Vazão (bdp)	500
Temperatura (F)	150
RGO (scf/stb)	100
Viscosidade (cp)	500
BSW (%)	20
Disponibilidade de gás comprimido (S/N)	S
Ambiente (offshore/onshore)	Onshore

Tabela 34 - Parâmetros de entrada para o segundo caso.

Profundidade (ft)	6000
Vazão (bdp)	300
Temperatura (F)	300
RGO (scf/stb)	400
Viscosidade (cp)	200
BSW (%)	20
Disponibilidade de gás comprimido (S/N)	S
Ambiente (offshore/onshore)	Onshore

Tabela 35 - Parâmetros de entrada para o terceiro caso.

Profundidade (ft)	5000
Vazão (bdp)	3000
Temperatura (F)	100
RGO (scf/stb)	1000
Viscosidade (cp)	300
BSW (%)	70
Disponibilidade de gás comprimido (S/N)	S
Ambiente (offshore/onshore)	Onshore

Tabela 36 - Parâmetros de entrada para o quarto caso.

O limite do bombeio mecânico para os casos 2, 3 e 4 foram de 6833,33 ft, 9333,33ft e 2187,5 ft respectivamente, ou seja, os 3 casos a profundidade máxima para o bombeio mecânico está dentro do limite suportado pelo método. A metodologia abordada por TAVARES, 2015, diferentemente deste trabalho não leva em consideração a profundidade de operação mínima para cada método, sendo assim alguns dados

encontrados para esta ferramenta divergiram dos dados encontrados por TAVARES, 2015. Os resultados da etapa eliminatória para o segundo, terceiro e quarto caso estão nas Tabelas 37, 38 e 39 respectivamente.

CONDIÇOES A SEREM ATENDIDAS - PRIMEIRA ETAPA					
Parâmetro	BM	ВСР	BCS	Gas Lift	
Profundidade Máxima					
(ft)	Ok	OK	OK	OK	
Vazão Máxima (bpd)	OK	OK	OK	OK	
Temperatura (F)	OK	OK	OK	OK	
RGO (scf/stb)	OK	OK	OK	OK	
Viscosidade (cp)	OK	OK	OK	OK	
BSW (%)	OK	OK	OK	OK	
Profundidade Mínima				Profundidade	
(ft)	Ok	Ok	Ok	mínima não alcançada	
Vazão Mínima (bpd)	OK	OK	OK	OK	
Ambiente	Ok	OK	OK	OK	
Disponibilidade de Gás	OK	OK	OK	OK	

Tabela 37 - Etapa eliminatório para o segundo caso.

CONDIÇOES A SEREM ATENDIDAS - PRIMEIRA ETAPA					
Parâmetro	BM	ВСР	BCS	Gas Lift	
Profundidade Máxima					
(ft)	Ok	OK	OK	OK	
Vazão Máxima (bpd)	OK	OK	OK	OK	
Temperatura (F)		Temperatura Máxima			
	OK	Excedida	OK	OK	
RGO (scf/stb)	OK	OK	OK	OK	
Viscosidade (cp)	OK	OK	OK	OK	
BSW (%)	OK	OK	OK	OK	
Profundidade Mínima (ft)	Ok	Ok	Ok	Ok	
Vazão Mínima (bpd)	OK	OK	OK	OK	

Ambiente	Ok	OK	OK	OK
Disponibilidade de Gás	OK	OK	OK	OK

Tabela 38 - Etapa eliminatório para o terceiro caso.

CONDIÇOES A SEREM ATENDIDAS - PRIMEIRA ETAPA					
Parâmetro	BM	ВСР	BCS	Gas Lift	
Profundidade Máxima					
(ft)	Ok	OK	OK	OK	
Vazão Máxima (bpd)	OK	OK	OK	OK	
Temperatura (F)	OK	OK	OK	OK	
RGO (scf/stb)	OK	OK	OK	OK	
Viscosidade (cp)	OK	OK	OK	OK	
BSW (%)	OK	OK	OK	OK	
Profundidade Mínima (ft)	Ok	Ok	Ok	Ok	
Vazão Mínima (bpd)	OK	OK	OK	OK	
Ambiente	Ok	OK	OK	OK	
Disponibilidade de Gás	OK	OK	OK	OK	

Tabela 39 - Etapa eliminatório para o quarto caso.

Para o segundo caso o método de gas lift foi desclassificado com base na profundidade mínima requerida para o método, como a profundidade mínima não é considerada na metodologia de TAVARES, 2015, esta é considerada uma das divergências de resultados obtidos neste trabalho com os obtidos por TAVARES, 2015.

Para o terceiro caso o método BCP é eliminado pela temperatura máxima excedida para este método. No quarto caso todos os métodos de elevação foram considerados aplicáveis na primeira etapa, sendo assim, todos irão pontuar na etapa classificatória.

Para os parâmetros de entrada do segundo caso o método considerado mais adequado é o BCP, seguido por BCS e BM.

Para os parâmetros de entrada do terceiro caso o método considerado mais adequado é o BM, seguido por gás lift e BCS. Esse resultado deve ser em função da maior adequabilidade do BM a baixas vazões e altas temperaturas.

Para os parâmetros de entrada do quarto caso o método considerado mais adequado é o BCS, seguido por gás lift e BCS, BCP e BM, sendo que os 2 últimos obtiveram a mesma pontuação média.

Os resultados referentes a etapa de classificação do melhor método artificial de elevação estão nas Tabelas 40, 41 e 42 referente ao caso 2, caso 3 e 4 respectivamente.

LÓGICA FUZZY - SEGUNDA ETAPA					
Parâmetro	BM	ВСР	BCS	Gas Lift	
Profundidade Máxima (ft)	0,75	0,5	1		
Vazão Máxima (bpd)	1	1	1		
Temperatura (F)	1	1	1		
RGO (scf/stb)	1	1	1		
Viscosidade (cp)	0	1	0		
BSW (%)	1	1	1		
Conceito Final	0,79167	0,91667	0,83333		

Tabela 40 - Etapa classificatória para o segundo caso.

LÓGICA FUZZY - SEGUNDA ETAPA					
Parâmetro	BM	ВСР	BCS	Gas Lift	
Profundidade Máxima (ft)	0		1	1	
Vazão Máxima (bpd)	1		0	0,125	
Temperatura (F)	1		0	0	
RGO (scf/stb)	1		1	0,75	
Viscosidade (cp)	1		0	0,666666667	
BSW (%)	1		1	1	
Conceito Final	0,83333		0,5	0,590277778	

Tabela 41 - Etapa classificatória para o terceiro caso.

LÓGICA FUZZY - SEGUNDA ETAPA					
Parâmetro	BM	BCP	BCS	Gas Lift	
Profundidade Máxima (ft)	0,5	0	1	1	
Vazão Máxima (bpd)	0	0	1	1	
Temperatura (F)	1	1	1	1	
RGO (scf/stb)	0,5	0,5	0,5	1	
Viscosidade (cp)	0,5	1	0	0,333333333	
BSW (%)	1	1	1	0	
Conceito Final	0,58333	0,58333	0,75	0,722222222	

Tabela 42 - Etapa classificatória para o quarto caso.

Para o segundo teste os engenheiros apontaram o BCP como o método que melhor atenderia as condições de entrada do poço. Devido à alta viscosidade indicada nas condições de entrada, o BM também foi dito como uma boa opção de aplicação.

Para o terceiro caso o bombeio mecânico foi apontado pelos engenheiros como o método de elevação mais adequado, características como temperatura e vazão foram decisivas.

Os engenheiros concordaram que para o quarto caso, as aplicações mais adequadas seriam o BCS e o gás lift. Apesar dos valores moderados da viscosidade e do RGO, os engenheiros chegaram a conclusão que estes dois parâmetros iriam se equilibrar favorecendo a aplicação do gás lift.

Caso	Resultados Engenheiros	Resultados Ferramenta	Individual	Geral	
1	BCS	BCS	\checkmark	. 0	
	gas lift	gas lift	\checkmark	>	
2	ВСР	ВСР	√		
	BM	BCS e BM ✓		*	
3	BM	BM	✓	. 0	
			√	❤	
4	gas lift	BCS	×	. 0	
	BCS	gas lift	×	•	

Tabela 43 - Resultados gerais e individuais de comparação da escolha dos engenheiros e do método mais adequado apontado pela ferramenta.

5. CONCLUSÃO E RECOMENDAÇÕES

Pode-se afirmar que o objetivo do trabalho de conclusão de curso foi atingido pois uma ferramenta construída em um software de fácil aquisição com um certo grau de flexibilidade para criação de curvas IPR, encontrar o ponto de equilíbrio de um poço e escolher o método de elevação mais adequado foi desenvolvida e testada com sucesso. As facilidades gráficas contribuem para o melhor entendimento dos efeitos presentes no processo estudado.

A ferramenta desenvolvida demonstrou-se muito útil para fins didáticos, obtendo um alto grau de confiabilidade quando comparada com resultados obtidos na literatura. Apresentando um erro da ordem de 10⁻⁴ pontos percentuais para praticamente todos os modelos de curva IPR presentes no trabalho. Os resultados obtidos para os quatro casos hipotéticos para escolha do melhor método de elevação, convergiram em 100% dos casos quando comparadas com as escolhas dos 2 engenheiros especialistas em método de elevação de petróleo, mostrando assim a eficácia da ferramenta apresentada no trabalho.

É importante ressaltar que esta ferramenta desenvolvida para a escolha do método mais adequado de elevação artificial, considera apenas alguns dos parâmetros mais significativos para tal escolha. Metodologias econômicas devem ser utilizadas para avaliação dos custos do projeto. Os custos com equipamentos de elevação, energia e reparos devem ser considerados. Ao selecionar um método de elevação deve-se considerar tanto a adequabilidade técnica, abordada neste trabalho, quanto a econômica.

A possibilidade de incluir diversos casos em uma mesma simulação permite ao usuário do programa realizar diversas análises importantes do ponto de vista da engenharia de produção como a análise de sensibilidade possível de ser realizada para os casos monofásicos do método I, onde pode-se avaliar a influência de cada parâmetro presentes nas equações para resposta final do sistema.

A ferramenta de comparação entre os modelos demonstrou que existe uma variação considerável entre as respostas finais para as curvas IPR de cada modelo proposto.

Ao comparar os resultados obtidos com as curvas IPR de previsão para cada modelo com os pontos reais de um teste de produção, verificou-se que sem dúvidas Fetkovich obteve os resultados com a menor média do erro percentual absoluto. Também

foi possível realizar a otimização da proximidade de cada modelo de previsão da curva IPR com os pontos reais de teste.

Sugere-se para trabalhos futuros, a continuação do presente trabalho com a integração de correlações para o cálculo das curvas TPR, o acréscimo de outros equipamentos de um sistema de produção como a válvula choke e o separador multifásico, além do dimensionamento dos métodos de elevação artificial escolhidos como mais adequados para cada caso e que a ferramenta possa contar com uma relação entre pressão estática e profundidade, uma vez que o método de elevação por gás lift poderá ser inviável dependendo do quão depletado for o reservatório.

REFERÊNCIAS BIBLIOGRÁFICAS

ALMEIDA, R., 2010, "Simulação Computacional da Interação Fluido-estrutura em Bombas de Cavidades Progressivas", Dissertação de Metrado, Universidade Federal do Rio Grande do Norte, Natal/RN.

ASSMANN, B., 2005, "Curso de Bombeio de Cavidades Progressivas", PETROBRAS.

ASSMANN, B., 2008, "Simulação, Controle Inteligente e Sistemas Especialista de Dimensionamento de Poços de Petróleo com Elevação por Bombeio de Cavidades Progressivas", Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Natal/RN.

BETÔNICO, G.C., 2011, "Seminário – Engenharia de Reservatórios I", Apresentação de seminário.

CLEGG, J. D.; BUCARAM, S. M.; HEIN, N. M., Jr. Recommendations and Comparisons for Selecting Artificial-Lift Methods. JPT, 1993.

FATTAH, K.A., Mohamed Elias, H. Ahmed El-Banbi, El-Sayed A. El-Tayeb. "NEW INFLOW PERFORMANCE RELATIONSHIP FOR SOLUTION-GAS DRIVE OIL RESERVOIRS". 2012. 24f. Artigo científico. Departamento de Engenharia de petróleo e gás natural, *Riyadh, Kingdom of Saudi Arabia*, 2012.

GUO, B. LYONS, W.C. GUALAMBOR, A. Petroleum Production Engineering: A Computer Assisted Approach. Amsterdam: Elsevier Science & Technology Books, Feb 2007. p. 3/36

GUO, B.; LIU, X.; TAN, X. Petroleum Production Enginnering: 2. ed. Amsterdam: Gulf Professional Publishing, 2017.

HALLIBURTON, Artificial Lift Systems and The 5 P's, 2012.

LEA, J. F.; NICKENS, H. V. *Selection of Artificial Lift*. Society of Petroleum Engineers (SPE 52157), 1999.

NEELY, B. Selection of Artificial Lift Method. Society of Petroleum Engineers (SPE 10337), 1981.

OLIVEIRA, R. C. Elevação Artificial de Petróleo – Bombeio Mecânico com Haste (BMH). Apostila, Aracaju, 2010.

SANTOS, R. A. EXCEL APLICADO A ENGENHARIA DE PETRÓLEO: IMPLEMENTAÇÃO DO MODELO DE AZIZ, GOVIER E FOGARASI PARA O CÁLCULO DO PONTO DE OPERAÇÃO DE POÇOS DE PETRÓLEO com vista à sua disponibilização na internet. 2016. 137f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Petróleo) — Universidade Federal Fluminense, Niterói, RJ, 2016. [Orientador: Prof. Dr. Victor Rolando Ruiz Ahón]. Disponível em: https://app.uff.br/riuff/bitstream/1/1994/1/TCC_Ricardo_Santos.pdf. Acesso em: 07 de setembro de 2018.

TAKÁCS, Gábor. Sucker-rod pumping manual / by Gábor Takács, 2003.

TAKÁCS, G. Electrical submersible pumps manual: design, operations and maitenance. Gulf Professional Publishing, 2009.

TAVARES, M. B., "SISTEMÁTICA DE SELEÇÃO DO MELHOR MÉTODO DE ELEVAÇÃO". 2015. 51f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Petróleo) — Universidade Federal do Rio Grande do Norte, Natal, RN, 2015. [Orientador: Prof. Dr. Rutácio de Oliveira Costa].

THOMAS, J. E., 2001, "Fundamentos de Engenharia de Petróleo", Editora Interciência, Rio de Janeiro/RJ.

THOMAS et al. Fundamentos da Engenharia de Petróleo. 2. ed. Rio de Janeiro: Interciência, 2004

VELÁZQUEZ, R. G. C. A. WELL PERFORMANCE UNDER SOLUTION GAS DRIVE com vista à sua disponibilização na internet. 1987. 275f. Tese de Doutorado na disciplina de Engenharia de Petróleo) – Universidade de Tulsa, Tulsa, Oklahoma, 1987. Disponível em: http://www.pe.tamu.edu/blasingame/data/0_Gen_Public/Refs_Theses_Archive/MS_CA MACHO_Rodolfo_(UTulsa)_1987.pdf; Acesso em: 28 Setembro. 2018.

APÊNDICE A - Código VBA para o Botão Ativar

```
Sub lsLigarTelaCheia()
         'Oculta todas as guias de menu
         Application.ExecuteExcel4Macro "SHOW.TOOLBAR(""Ribbon"",False)"
         'Ocultar barra de fórmulas
         Application. Display Formula Bar = False
         'Ocultar barra de status, disposta ao final da planilha
         Application. DisplayStatus\overline{Bar} = \overline{False}
         'Alterar o nome do Excel
         Application.Caption = "Simulador de Surgencia e escolha de Métodos de
elevação para poços de Petróleo"
         With ActiveWindow
            'Ocultar barra horizontal
            .DisplayHorizontalScrollBar = False
            'Ocultar barra vertical
            .DisplayVerticalScrollBar = True
            'Ocultar guias das planilhas
            .DisplayWorkbookTabs = False
            'Oculta os títulos de linha e coluna
            .DisplayHeadings = False
            'Oculta valores zero na planilha
            .DisplayZeros = False
            'Oculta as linhas de grade da planilha
            .DisplayGridlines = False
         End With
       End Sub
```

APÊNDICE B – Código VBA para o Botão Desativar

```
Sub lsDesligarTelaCheia()
  'Reexibe os menus
  Application.ExecuteExcel4Macro "SHOW.TOOLBAR(""Ribbon"",True)"
  'Reexibir a barra de fórmulas
  Application. Display Formula Bar = False
  'Reexibir a barra de status, disposta ao final da planilha
  Application. DisplayStatusBar = False
  'Reexibir o cabeçalho da Pasta de trabalho
  ActiveWindow.DisplayHeadings = False
  'Retornar o nome do Excel
  Application.Caption = ""
  With ActiveWindow
    'Reexibir barra horizontal
    .DisplayHorizontalScrollBar = True
    'Reexibir barra vertical
    .DisplayVerticalScrollBar = True
    'Reexibir guias das planilhas
    .DisplayWorkbookTabs = True
    'Reexibir os títulos de linha e coluna
    .DisplayHeadings = True
    'Reexibir valores zero na planilha
    .DisplayZeros = True
    'Reexibir as linhas de grade da planilha
    .DisplayGridlines = True
  End With
End Sub
```

APÊNDICE C – Código VBA para o Botão Salvar

```
Sub testesalvarplanilha()
'testesalvarplanilha Macro
'
ActiveWorkbook.Save
End Sub
```

APÊNDICE D – Código VBA para o Botão Limpar

```
Sub limparvogel()
' limparvogel Macro
'

Range("F7,F9,F11,F13,L7,L9,L11,L13,L17").Select
Range("L17").Activate
Selection.ClearContents
End Sub
```

APÊNDICE E - Código VBA para o Botão Solver

```
Sub solverregressao()
      ' solverregressao Macro
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverSolve True
                      SetCell:="$AZ$22",
                                                                  ValueOf:=0,
        SolverOk
                                              MaxMinVal:=3,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
        SolverOk
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverSolve True
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverSolve True
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
                      SetCell:="$AZ$22",
        SolverOk
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverSolve True
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverOk
                      SetCell:="$AZ$22",
                                              MaxMinVal:=3,
                                                                  ValueOf:=0,
ByChange:="$AX$20", _
          Engine:=1, EngineDesc:="GRG Nonlinear"
        SolverSolve True
      End Sub
```

APÊNDICE F - Código PROFMB

```
'vazão versus profundidade BM
       'Profundidade máxima com base na vazão de entrada
      Function profbm(BM As Range, qdado)
      npt = BM.Count / 2
       Dim prof(100), q(100)
      For i = 1 To npt
       prof(i) = BM.Cells(i, 1)
      q(i) = BM.Cells(i, 2)
      Next i
      For i = 1 To npt - 1
      If (q(i) - qdado) * (q(i + 1) - qdado) \le 0 Then
      achei = i
      Exit For
      End If
      Next i
      profinter = (prof(achei + 1) - prof(achei)) / (q(achei + 1) - q(achei)) * (qdado -
q(achei)) + prof(achei)
      End Function
                  APÊNDICE G – Código INTERPOLAR
      Function INTERPOLAR(valor_buscado As Double, matriz_buscar_en As Range,
matriz resultado As Range) As Double
      nElementos = matriz_buscar_en.Count
      For i = 1 To nElementos - 1
         If valor_buscado >= matriz_buscar_en(i) And valor_buscado <=
matriz_buscar_en(i + 1) Then
           a = matriz_buscar_en(i)
           b = matriz\_buscar\_en(i + 1)
           m = matriz resultado(i)
           n = matriz\_resultado(i + 1)
           x = valor\_buscado
           INTERPOLAR = m + (m - n) / (a - b) * (x - a)
           Exit Function
         ElseIf valor_buscado <= matriz_buscar_en(i) And valor_buscado >=
matriz\_buscar\_en(i + 1) Then
           a = matriz_buscar_en(i)
           b = matriz\_buscar\_en(i + 1)
           m = matriz\_resultado(i)
           n = matriz\_resultado(i + 1)
           x = valor\_buscado
           INTERPOLAR = m + (m - n) / (a - b) * (x - a)
           Exit Function
         Else
         End If
      Next
```

End Function

APÊNDICE H - Código INTERSECTCOMPLEX

```
Option Explicit
      Public Function IntersectComplex(x1 As Double, y1 As Double, x2 As Double,
y2 As Double, LineCoordinates As Range, Axis As Boolean) As Variant
         Dim dblCrossX As Double
         Dim dblCrossY As Double
         Dim dblTestx1 As Double
         Dim dblTesty1 As Double
         Dim dblTestx2 As Double
         Dim dblTesty2 As Double
         Dim intSegment As Integer
         With LineCoordinates
           For intSegment = 1 \text{ To .Rows.Count - } 1
              dblTestx1 = .Cells(intSegment, 1)
              dblTesty1 = .Cells(intSegment, 2)
              dblTestx2 = .Cells(intSegment + 1, 1)
              dblTesty2 = .Cells(intSegment + 1, 2)
              If m_CalculateIntersection(x1, y1, x2, y2, dblTestx1, dblTesty1,
dblTestx2, dblTesty2, dblCrossX, dblCrossY) Then
                If Axis Then
                  IntersectComplex = dblCrossX
                  IntersectComplex = dblCrossY
                End If
                Exit Function
             End If
           Next
           intSegment = .Rows.Count
           dblTestx1 = .Cells(intSegment, 1)
           dblTesty1 = .Cells(intSegment, 2)
           dblTestx2 = .Cells(intSegment, 1)
           dblTesty2 = .Cells(intSegment, 2)
           If m_CalculateIntersection(x1, y1, x2, y2, dblTestx1, dblTesty1, dblTestx2,
dblTesty2, dblCrossX, dblCrossY) Then
             If Axis Then
                IntersectComplex = dblCrossX
              Else
                IntersectComplex = dblCrossY
              End If
             Exit Function
           End If
         End With
         IntersectComplex = CVErr(xlErrNA) 'Null
      End Function
```

```
Private Function m_CalculateIntersection(x1 As Double, y1 As Double, x2 As
Double, y2 As Double, _
         x3 As Double, y3 As Double, x4 As Double, y4 As Double, _
         ByRef CrossX As Double, ByRef CrossY As Double) As Variant
         Dim dblDenominator As Double
         Dim dblUa As Double
         Dim dblUb As Double
           dblDenominator = ((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1))
         If dblDenominator <> 0 Then
                dblUa = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / dblDenominator
           dblUb = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / dblDenominator
         Else
           If (x1 = x3) And (y1 = y3) Then
              CrossX = x1
              CrossY = y1
              m_CalculateIntersection = True
           Else
              m_CalculateIntersection = False
           End If
           Exit Function
         End If
         If dblUa >= 0 And dblUa <= 1 And dblUb >= 0 And dblUb <= 1 Then
           CrossX = x1 + dblUa * (x2 - x1)
           CrossY = y1 + dblUa * (y2 - y1)
           m_CalculateIntersection = True
         Else
           m CalculateIntersection = False
         End If
```

End Function