Use este identificador para citar ou linkar para este item: http://riu.ufam.edu.br/handle/prefix/1462
Tipo de documento: Relatório de Pesquisa
Título: Fatores de Bayes em Misturas de Densidades Normais ou t de Student Assimétricas
Autor(a): Nelson Lima de Souza Filho
Orientador(a): Maria Ivanilde Silva Araújo
Resumo: Neste projeto consideramos, sob o ponto de vista Bayesiano, o problema de seleção de modelos na classe das misturas finitas de densidades normais ou t de Student assimétricas. Distribuições que estendem a família das distribuições normais ou t, através da introdução de parâmetros que regulam assimetria, têm recebido uma considerável atenção na literatura estatística recente. Azzalini (2005) faz uma revisão da abordagem freqüentista do tema, em relação à propriedades destas novas famílias de distribuições assimétricas e estimação por máxima verossimilhança. Outra área com intensa atividade de pesquisa é a de misturas de densidades. Misturas são úteis para modelar dados heterogêneos, onde sabemos que as observações pertencem à um número finito de populações distintas, mas não sabemos como discriminá-las. Além disso, são modelos suficientemente flexíveis para aproximar densidades não triviais. Grande parte da literatura nesta área é relacionada à misturas de normais usuais. Uma referência que contém bastante material Bayesiano relevante relacionado ao tema é o livro de Frühwirth-Schnatter (2006). No entanto, várias situações reais apresentam observações que claramente podem ser modeladas por misturas, mas que apresentam, em cada população, um comportamento asimétrico, possivelmente com observações discrepantes. Neste tipo de situação, é mais recomendável um tratamento que envolva misturas de densidades assimétricas e que apresentem robustez em relação à outiliers, como o feito em Cabral et al. (2008), onde são analisados dados referentes ao PIB de 174 países (UNDP, 2000). Uma questão relevante é decidir o número k de componentes (populações) no modelo de misturas - a cada k corresponde um modelo diferente. Isto pode ser feito através da obtenção de fatores de Bayes, que por sua vez são determinados pelas verossimilhanças marginais associadas à cada modelo. No caso de misturas de densidades assimétricas, que seja de nosso conhecimento, não existem até o momento trabalhos voltados para estimação destas quantidades. Este projeto contém uma proposta que visa obter alguns procedimentos de seleção Bayesiana de modelos de misturas de densidades normais e t assimétricas.
Resumo em outro idioma: 
Palavras-chave: Fator de Bayes: Mistura de Densidades: Inferência Bayesiana
Área de conhecimento - CNPQ: Ciências Exatas e da Terra: Probabilidade e Estatistica Aplicadas
Idioma: pt_BR
País de publicação: Brasil
Editor: Universidade Federal do Amazonas
Sigla da Instituição: UFAM
Faculdade, Instituto ou Departamento: Estatística
Instituto de Ciências Exatas
Nome do programa: Programa PIBIC 2008
Tipo de acesso: Acesso Restrito
URI: http://riu.ufam.edu.br/handle/prefix/1462
Data do documento: 31-jul-2009
Aparece nas coleções:Relatórios finais de Iniciação Científica

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.