Please use this identifier to cite or link to this item: http://riu.ufam.edu.br/handle/prefix/4857
metadata.dc.type: Relatório de Pesquisa
Title: Sobre Grafos Perfeitos, Cliques e Colorações
metadata.dc.creator: Ana Vitória Vitoriano Cordeiro
metadata.dc.contributor.advisor1: Rosiane de Freitas Rodrigues
metadata.dc.description.resumo: Este projeto de pesquisa é continuação do projeto de PIBIC-Jr 2013-2014 (projeto PIBJR-E0002, sobre Cliques em Grafos, do qual a presente aluna é atualmente bolsista), que motivou o ingresso da referida aluna no curso de Bacharelado em Ciência da Computação, envolvendo o estudo de Teoria dos Grafos, especificamente o problema de determinar a clique máxima e a elaboração de algoritmos, com implementação de um jogo em app móvel. Neste projeto em andamento, alguns jogos modelados como cliques em grafos estão sendo analisados. Sendo assim, pretende-se dar continuidade à pesquisa, agora investigando a classe de grafos perfeitos em problemas especiais de cliques e de colorações. Problemas de cliques em grafos podem estar presentes em aplicações web, na definição de padrões de tráfego de telecomunicações, na construção de códigos de correção de erros, diagnóstico de falhas em grandes sistemas de multiprocessadores, visão computacional e reconhecimento de padrões, além de serem aplicáveis na bioinformática e química computacional. O problema clássico de coloração de vértices de um grafo, envolve a determinação de uma coloração própria dos vértices deste grafos, onde vértices adjacentes tenham cores distintas, usando o menor número de cores possíveis [DIESTEL, 2000] [BONDY e MURTY, 2008]. Unificando os resultados relativos a colorações e cliques, um grafo perfeito é aquele em que o número cromático de cada subgrafo induzido é igual ao tamanho da maior clique deste subgrafo. Em qualquer grafo, o número de clique fornece um limite inferior para o número cromático, assim como para todos os vértices em uma clique devem ser atribuídos cores distintas em qualquer coloração própria. Os grafos perfeitos são aqueles para os quais este limite inferior é apertado, não apenas no grafo em si, mas em todos os seus subgrafos induzidos. A classe de grafos perfeitos inclui muitas famílias importantes de grafos, tais como os grafos bipartidos, cordais e de comparabilidade. Para tal classe, o problema clássico de coloração de vértices, o problema da clique máxima e o problema do conjunto independente máximo, podem ser resolvidos em tempo polinomial. No complemento de grafos bipartidos, o teorema de König's permite que o problema de clique máximo seja resolvido usando técnicas para matching. Em outra classe de grafos perfeitos, os grafos de permutação, o clique máximo é a mais longa subsequência decrescente da permutação definindo o grafo. Para grafos gerais, tais problemas são NP-difíceis. Além disso, vários teoremas importantes min-max (max-min) em análise combinatória podem ser expressos em termos da perfeição de alguns grafos associados.
Abstract: 
Keywords: algoritmos
teoria dos grafos
otimização combinatória
metadata.dc.subject.cnpq: Ciências Exatas e da Terra: Ciencia da Computacao
metadata.dc.language: pt_BR
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Amazonas
metadata.dc.publisher.initials: UFAM
metadata.dc.publisher.department: Ciências da Computacao
Instituto de Ciências Exatas
metadata.dc.publisher.program: PROGRAMA PIBIC 2014
metadata.dc.rights: Acesso Restrito
URI: http://riu.ufam.edu.br/handle/prefix/4857
Issue Date: 31-Jul-2015
Appears in Collections:Relatórios finais de Iniciação Científica

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.